3,543,495 research outputs found
Sodium Atoms in the Lunar Exotail: Observed Velocity and Spatial Distributions
The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be ~ 12.5 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 x 15 deg region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3 deg east along the ecliptic per night. Preliminary modeling results suggest the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution. Future observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days
XX. Meaning in the Physical Sciences
The twentieth century has seen two major revolutions in our theories of physics concerning nature, and these have made us change many of our concepts about the terms in which nature can be described. The new theories born in these revolutions are the theory of relativity and of quantum mechanics. The biological sciences had their revolutions in the nineteenth century, and while remarkable progress has been made since, nothing comparable to that upheaval has occurred in this century. Of the two massive changes in the concepts of the physical sciences, we can discuss but one here. [excerpt
Why Biology is Beyond Physical Sciences?
In the framework of materialism, the major attention is to find general organizational laws stimulated by physical sciences, ignoring the uniqueness of Life. The main goal of materialism is to reduce consciousness to natural processes, which in turn can be translated into the language of math, physics and chemistry. Following this approach, scientists have made several attempts to deny the living organism of its veracity as an immortal soul, in favor of genes, molecules, atoms and so on. However, advancement in various fields of biology has repeatedly given rise to questions against such a denial and has supplied more and more evidence against the completely misleading ideological imposition that living entities are particular states of matter. In the recent past, however, the realization has arisen that cognitive nature of life at all levels has begun presenting significant challenges to the views of materialism in biology and has created a more receptive environment for the soul hypothesis. Therefore, instead of adjudicating different aprioristic claims, the development of an authentic theory of biology needs both proper scientific knowledge and the appropriate tools of philosophical analysis of life. In a recently published paper the first author of present essay made an attempt to highlight a few relevant developments supporting a sentient view of life in scientific research, which has caused a paradigm shift in our understanding of life and its origin [1]. The present essay highlights the uniqueness of biological systems that offers a considerable challenge to the mainstream materialism in biology and proposes the Vedāntic philosophical view as a viable alternative for development of a biological theory worthy of life
Differences in Persistence Patterns Between Life and Physical Science Majors: The Role of Grades, Peers, and Preparation
Using longitudinal administrative data from a large elite research university, this paper separately analyzes the determinants of persistence for life and physical science majors. My results confirm much of the previous research on major persistence in the sciences, but I document that many findings are solely driven by persistence patterns in the physical sciences. For example, I show that the previously documented gender gap in science major persistence is due entirely to a large gap in the physical sciences. Despite large differences in persistence patterns between physical and life science, persistence in both fields is similarly influenced by grades. I provide suggestive evidence that students in both fields are “pulled away” by their high grades in non-science courses and “pushed out” by their low grades in their major field. In the physical sciences, analyses using within course and cohort variation show that peer quality in a student’s introductory courses has a lasting impact on the probability of persisting
Collaborative yet independent: Information practices in the physical sciences
In many ways, the physical sciences are at the forefront of using digital tools and methods to work with information and data. However, the fields and disciplines that make up the physical sciences are by no means uniform, and physical scientists find, use, and disseminate information in a variety of ways. This report examines information practices in the physical sciences across seven cases, and demonstrates the richly varied ways in which physical scientists work, collaborate, and share information and data.
This report details seven case studies in the physical sciences. For each case, qualitative interviews and focus groups were used to understand the domain. Quantitative data gathered from a survey of participants highlights different information strategies employed across the cases, and identifies important software used for research.
Finally, conclusions from across the cases are drawn, and recommendations are made. This report is the third in a series commissioned by the Research Information Network (RIN), each looking at information practices in a specific domain (life sciences, humanities, and physical sciences). The aim is to understand how researchers within a range of disciplines find and use information, and in particular how that has changed with the introduction of new technologies
2-D ELASTODYNAMIC PROBLEM FOR AN INTERFACE CRACK UNDER AN OBLIQUE HARMONIC LOADING
Acknowledgements The authors would like to acknowledge major financial support received from the College of the Physical Sciences of the University of Aberdeen and the Engineering and Physical Sciences Research Council.Postprin
Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4
Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
- …
