80 research outputs found

    Design and performance analysis of optical attocell networks

    Get PDF
    The exponentially increasing demand for high-speed wireless communications will no longer be satisfied by the traditional radio frequency (RF) in the near future due to its limited spectrum and overutilization. To resolve this imminent issue, industrial and research communities have been looking into alternative technologies for communication. Among them, visible light communication (VLC) has attracted much attention because it utilizes the unlicensed, free and safe spectrum, whose bandwidth is thousand times larger than the entire RF spectrum. Moreover, VLC can be integrated into existing lighting systems to offer a dual-purpose, cost-effective and energy-efficient solution for next-generation small-cell networks (SCNs), giving birth to the concept of optical attocell networks. Most relevant works in the literature rely on system simulations to quantify the performance of attocell networks, which suffer from high computational complexity and provide limited insights about the network. Mathematical tools, on the other hand, are more tractable and scalable and are shown to closely approximate practical systems. The presented work utilizes stochastic geometry for downlink evaluation of optical attocell networks, where the co-channel interference (CCI) surpasses noise and becomes the limiting factor of the link throughput. By studying the moment generating function (MGF) of the aggregate interference, a theoretical framework for modeling the distribution of signal-to-interference-plus-noise ratio (SINR) is presented, which allows important performance metrics such as the coverage probability and link throughput to be derived. Depending on the source of interference, CCI can be classified into two categories: inter-cell interference (ICI) and intra-cell interference. In this work, both types of interference are characterized, based on which effective interference mitigation techniques such as the coordinated multipoint (CoMP), power-domain multiplexing and successive interference cancellation (SIC) are devised. The proposed mathematical framework is applicable to attocell networks with and without such interference mitigation techniques. Compared to RF networks, optical attocell networks are inherently more secure in the physical layer because visible light does not penetrate through opaque walls. This work analytically quantifies the physical-layer security of attocell networks from an information-theoretic point of view. Secrecy enhancement techniques such as AP cooperation and eavesdropper-free protected zones are also discussed. It is shown that compared to AP cooperation, implementing secrecy protected zones is more effective and it can contribute significantly to the network security

    Light-Fidelity as Next Generation Network Technology: A Bibliometric Survey and Analysis

    Get PDF
    This paper delivers a systematic review and a bibliometric survey analysis of Light-Fidelity (Li-Fi) indoor implementation in Next Generation Network (NGN). The main objective of this study is to design a communication network based on NGN-Li-Fi for the indoor implementation which aims to increase user Quality of Service (QoS). The main merits and contributions of this study are the thorough and detailed analysis of the review, both in literature surveys and bibliometric analysis, as well as the discussion of the implementation model challenges of Li-Fi in both indoor and outdoor environments. The issue articulated in an indoor communication network is the possibility of intermittent connectivity due to barriers caused by line-of-sight (LOS) between the LED transmitter and receiver, handover due to channel overlap, and other network reliability issues. To realize the full potential and significant benefits of the Next Generation Network, challenges in indoor communication such as load-balancing and anticipating network congestion (traffic congestion) must be addressed. The main benefit of this study is the in-depth investigation of surveys in both selected critical literatures and bibliometric approach. This study seeks to comprehend the implications of Next Generation networks for indoor communication networks, particularly for visible light communication channels

    Measurements-Based Channel Models for Indoor LiFi Systems

    Get PDF
    Light-fidelity (LiFi) is a fully-networked bidirectional optical wireless communication (OWC) that is considered a promising solution for high-speed indoor connectivity. Unlike in conventional radio frequency wireless systems, the OWC channel is not isotropic, meaning that the device orientation affects the channel gain significantly. However, due to the lack of proper channel models for LiFi systems, many studies have assumed that the receiver is vertically upward and randomly located within the coverage area, which is not a realistic assumption from a practical point of view. In this paper, novel realistic and measurement-based channel models for indoor LiFi systems are proposed. Precisely, the statistics of the channel gain are derived for the case of randomly oriented stationary and mobile LiFi receivers. For stationary users, two channel models are proposed, namely, the modified truncated Laplace (MTL) model and the modified Beta (MB) model. For LiFi users, two channel models are proposed, namely, the sum of modified truncated Gaussian (SMTG) model and the sum of modified Beta (SMB) model. Based on the derived models, the impact of random orientation and spatial distribution of LiFi users is investigated, where we show that the aforementioned factors can strongly affect the channel gain and system performance

    Introduction to indoor networking concepts and challenges in LiFi

    Get PDF
    LiFi is networked, bidirectional wireless communication with light. It is used to connect fixed and mobile devices at very high data rates by harnessing the visible light and infrared spectrum. Combined, these spectral resources are 2600 times larger than the entire radio frequency (RF) spectrum. This paper provides the motivation behind why LiFi is a very timely technology, especially for 6th generation (6G) cellular communications. It discusses and reviews essential networking technologies, such as interference mitigation and hybrid LiFi/Wi-Fi networking topologies. We also consider the seamless integration of LiFi into existing wireless networks to form heterogeneous networks across the optical and RF domains and discuss implications and solutions in terms of load balancing. Finally, we provide the results of a real-world hybrid LiFi/Wi-Fi network deployment in a software defined networking testbed. In addition, results from a LiFi deployment in a school classroom are provided, which show that Wi-Fi network performance can be improved significantly by offloading traffic to the LiFi

    Lights and Shadows: A Comprehensive Survey on Cooperative and Precoding Schemes to Overcome LOS Blockage and Interference in Indoor VLC

    Get PDF
    Visible light communications (VLC) have received significant attention as a way of moving part of the saturated indoor wireless traffic to the wide and unregulated visible optical spectrum. Nowadays, VLC are considered as a suitable technology, for several applications such as high-rate data transmission, supporting internet of things communications or positioning. The signal processing originally derived from radio-frequency (RF) systems such as cooperative or precoding schemes can be applied to VLC. However, its implementation is not straightforward. Furthermore, unlike RF transmission, VLC present a predominant line-of-sight link, although a weak non-LoS component may appear due to the reflection of the light on walls, floor, ceiling and nearby objects. Blocking effects may compromise the performance of the aforementioned transmission schemes. There exist several surveys in the literature focused on VLC and its applications, but the management of the shadowing and interference in VLC requires a comprehensive study. To fill this gap, this work introduces the implementation of cooperative and precoding schemes to VLC, while remarking their benefits and drawbacks for overcoming the shadowing effects. After that, the combination of both cooperative and precoding schemes is analyzed as a way of providing resilient VLC networks. Finally, we propose several open issues that the cooperative and precoding schemes must face in order to provide satisfactory VLC performance in indoor scenarios.This work has been supported partially by Spanish National Project TERESA-ADA(TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE), the research project GEOVEOLUZ-CM-UC3Mfunded by the call “Programa de apoyo a la realización de proyectos interdisciplinares de I+D parajóvenes investigadores de la Universidad Carlos III de Madrid 2019-2020” under the frame ofthe Convenio Plurianual Comunidad de Madrid-Universidad Carlos III de Madrid and projectMadrid Flight on Chip (Innovation Cooperative Projects Comunidad of Madrid - HUBS 2018/MadridFlightOnChip). Additionally, it has been supported partially by the Juan de la CiervaIncorporación grant IJC2019-040317-I and Juan de la Cierva Formación grant (FJC2019-039541-I/AEI/10.13039/501100011033)

    Bidirectional LiFi Attocell Access Point Slicing Scheme

    Get PDF
    LiFi attocell access networks will be deployed everywhere to support diverse applications and service provisioning to various end-users. The LiFi infrastructure providers will need to offer LiFi access points (APs) resources as a service. This, however, requires a research challenge to be solved to dynamically and effectively allocate resources among service providers (SPs) while guaranteeing performance isolation among them and their respective users. This paper introduces an autonomic resource slicing (virtualization) scheme, which realizes autonomic management and configuration of virtual APs, in a LiFi attocell access network, based on SPs and their users service requirements. The developed scheme comprises of traffic analysis and classification, a local AP controller, downlink and uplink slice resources manager, traffic measurement, and information collection modules. It also contains a hybrid medium access protocol and an extended token bucket fair queueing algorithm to support uplink access virtualization and spectrum slicing. The proposed resource slicing scheme collects and analyzes the traffic statistics of the different applications supported on the slices defined in each LiFi AP and distributes the available resources fairly and proportionally among them. It uses a control algorithm to adjust the minimum contention window of user devices to achieve the target throughput and ensure airtime fairness among SPs and their users. The developed scheme has been extensively evaluated using OMNeT++. The obtained results show various resource slicing capabilities to support differentiated services and performance isolation
    corecore