11 research outputs found

    Analysis of Channel-Based User Authentication by Key-Less and Key-Based Approaches

    Full text link
    User authentication (UA) supports the receiver in deciding whether a message comes from the claimed transmitter or from an impersonating attacker. In cryptographic approaches messages are signed with either an asymmetric or symmetric key, and a source of randomness is required to generate the key. In physical layer authentication (PLA) instead the receiver checks if received messages presumably coming from the same source undergo the same channel. We compare these solutions by considering the physical-layer channel features as randomness source for generating the key, thus allowing an immediate comparison with PLA (that already uses these features). For the symmetric-key approach we use secret key agreement, while for asymmetric-key the channel is used as entropy source at the transmitter. We focus on the asymptotic case of an infinite number of independent and identically distributed channel realizations, showing the correctness of all schemes and analyzing the secure authentication rate, that dictates the rate at which the probability that UA security is broken goes to zero as the number of used channel resources (to generate the key or for PLA) goes to infinity. Both passive and active attacks are considered and by numerical results we compare the various systems

    How to Test the Randomness from the Wireless Channel for Security?

    Full text link
    We revisit the traditional framework of wireless secret key generation, where two parties leverage the wireless channel randomness to establish a secret key. The essence in the framework is to quantify channel randomness into bit sequences for key generation. Conducting randomness tests on such bit sequences has been a common practice to provide the confidence to validate whether they are random. Interestingly, despite different settings in the tests, existing studies interpret the results the same: passing tests means that the bit sequences are indeed random. In this paper, we investigate how to properly test the wireless channel randomness to ensure enough security strength and key generation efficiency. In particular, we define an adversary model that leverages the imperfect randomness of the wireless channel to search the generated key, and create a guideline to set up randomness testing and privacy amplification to eliminate security loss and achieve efficient key generation rate. We use theoretical analysis and comprehensive experiments to reveal that common practice misuses randomness testing and privacy amplification: (i) no security insurance of key strength, (ii) low efficiency of key generation rate. After revision by our guideline, security loss can be eliminated and key generation rate can be increased significantly

    Triple Pool Net: A novel robust Convolution neural network for image/content classification

    Get PDF
    With the rise of artificial intelligence and machine learning, it is highly desired to find a more efficient neural network architecture for real-life applications. In this paper we propose a novel convolution neural network (CNN) architecture known as triple-pool network (TP-Net), to achieve light-weight training and classification processes. We will firstly provide a comprehensive review on the state-of-the-art, and give a detailed description on the proposed TP-Net. To verify its efficiency, extensive experiments are conducted to compare its performance in terms of training time, error rate (or accuracy), and CPU load in flops, to a number of recently reported CNN architectures, where a well-known publicly available datesets, including CIFAR 10/100, German traffic signs, and SVHN. The network is designed for a convolution neural network(CNN) and can be readily used for image classification or even light weight authentication. We have carefully designed the network to address the gradient vanishing problem that persists in several larger neural network architectures and also addressed the problem of feature loss while reducing dimensions in the pooling layer

    Physical layer authentication for wireless communications

    Get PDF
    指導教員:姜 暁

    Physical Layer Authentication Enhancement Using Two-Dimensional Channel Quantization

    No full text

    Authentication enhancement in command and control networks: (a study in Vehicular Ad-Hoc Networks)

    Get PDF
    Intelligent transportation systems contribute to improved traffic safety by facilitating real time communication between vehicles. By using wireless channels for communication, vehicular networks are susceptible to a wide range of attacks, such as impersonation, modification, and replay. In this context, securing data exchange between intercommunicating terminals, e.g., vehicle-to-everything (V2X) communication, constitutes a technological challenge that needs to be addressed. Hence, message authentication is crucial to safeguard vehicular ad-hoc networks (VANETs) from malicious attacks. The current state-of-the-art for authentication in VANETs relies on conventional cryptographic primitives, introducing significant computation and communication overheads. In this challenging scenario, physical (PHY)-layer authentication has gained popularity, which involves leveraging the inherent characteristics of wireless channels and the hardware imperfections to discriminate between wireless devices. However, PHY-layerbased authentication cannot be an alternative to crypto-based methods as the initial legitimacy detection must be conducted using cryptographic methods to extract the communicating terminal secret features. Nevertheless, it can be a promising complementary solution for the reauthentication problem in VANETs, introducing what is known as “cross-layer authentication.” This thesis focuses on designing efficient cross-layer authentication schemes for VANETs, reducing the communication and computation overheads associated with transmitting and verifying a crypto-based signature for each transmission. The following provides an overview of the proposed methodologies employed in various contributions presented in this thesis. 1. The first cross-layer authentication scheme: A four-step process represents this approach: initial crypto-based authentication, shared key extraction, re-authentication via a PHY challenge-response algorithm, and adaptive adjustments based on channel conditions. Simulation results validate its efficacy, especially in low signal-to-noise ratio (SNR) scenarios while proving its resilience against active and passive attacks. 2. The second cross-layer authentication scheme: Leveraging the spatially and temporally correlated wireless channel features, this scheme extracts high entropy shared keys that can be used to create dynamic PHY-layer signatures for authentication. A 3-Dimensional (3D) scattering Doppler emulator is designed to investigate the scheme’s performance at different speeds of a moving vehicle and SNRs. Theoretical and hardware implementation analyses prove the scheme’s capability to support high detection probability for an acceptable false alarm value ≤ 0.1 at SNR ≥ 0 dB and speed ≤ 45 m/s. 3. The third proposal: Reconfigurable intelligent surfaces (RIS) integration for improved authentication: Focusing on enhancing PHY-layer re-authentication, this proposal explores integrating RIS technology to improve SNR directed at designated vehicles. Theoretical analysis and practical implementation of the proposed scheme are conducted using a 1-bit RIS, consisting of 64 × 64 reflective units. Experimental results show a significant improvement in the Pd, increasing from 0.82 to 0.96 at SNR = − 6 dB for multicarrier communications. 4. The fourth proposal: RIS-enhanced vehicular communication security: Tailored for challenging SNR in non-line-of-sight (NLoS) scenarios, this proposal optimises key extraction and defends against denial-of-service (DoS) attacks through selective signal strengthening. Hardware implementation studies prove its effectiveness, showcasing improved key extraction performance and resilience against potential threats. 5. The fifth cross-layer authentication scheme: Integrating PKI-based initial legitimacy detection and blockchain-based reconciliation techniques, this scheme ensures secure data exchange. Rigorous security analyses and performance evaluations using network simulators and computation metrics showcase its effectiveness, ensuring its resistance against common attacks and time efficiency in message verification. 6. The final proposal: Group key distribution: Employing smart contract-based blockchain technology alongside PKI-based authentication, this proposal distributes group session keys securely. Its lightweight symmetric key cryptography-based method maintains privacy in VANETs, validated via Ethereum’s main network (MainNet) and comprehensive computation and communication evaluations. The analysis shows that the proposed methods yield a noteworthy reduction, approximately ranging from 70% to 99%, in both computation and communication overheads, as compared to the conventional approaches. This reduction pertains to the verification and transmission of 1000 messages in total
    corecore