1 research outputs found

    Machine learning for advanced characterisation of silicon solar cells

    Full text link
    Improving the efficiency, reliability, and durability of photovoltaic cells and modules is key to accelerating the transition towards a carbon-free society. With tens of millions of solar cells manufactured every day, this thesis aims to leverage the available characterisation data to identify defects in solar cells using powerful machine learning techniques. Firstly, it explores temperature and injection dependent lifetime data to characterise bulk defects in silicon solar cells. Machine learning algorithms were trained to model the recombination statistics’ inverse function and predict the defect parameters. The proposed image representation of lifetime data and access to powerful deep learning techniques surpasses traditional defect parameter extraction techniques and enables the extraction of temperature dependent defect parameters. Secondly, it makes use of end-of-line current-voltage measurements and luminescence images to demonstrate how luminescence imaging can satisfy the needs of end-of-line binning. By introducing a deep learning framework, the cell efficiency is correlated to the luminescence image and shows that a luminescence-based binning does not impact the mismatch losses of the fabricated modules while having a greater capability of detecting defects in solar cells. The framework is shown in multiple transfer learning and fine-tuning applications such as half-cut and shingled cells. The method is then extended for automated efficiency-loss analysis, where a new deep learning framework identifies the defective regions in the luminescence image and their impact on the overall cell efficiency. Finally, it presents a machine learning algorithm to model the relationship between input process parameters and output efficiency to identify the recipe for achieving the highest solar cell efficiency with the help of a genetic algorithm optimiser. The development of machine learning-powered characterisation truly unlocks new insight and brings the photovoltaic industry to the next level, making the most of the available data to accelerate the rate of improvement of solar cell and module efficiency while identifying the potential defects impacting their reliability and durability
    corecore