38 research outputs found

    Hierarchical-level rain image generative model based on GAN

    Full text link
    Autonomous vehicles are exposed to various weather during operation, which is likely to trigger the performance limitations of the perception system, leading to the safety of the intended functionality (SOTIF) problems. To efficiently generate data for testing the performance of visual perception algorithms under various weather conditions, a hierarchical-level rain image generative model, rain conditional CycleGAN (RCCycleGAN), is constructed. RCCycleGAN is based on the generative adversarial network (GAN) and can generate images of light, medium, and heavy rain. Different rain intensities are introduced as labels in conditional GAN (CGAN). Meanwhile, the model structure is optimized and the training strategy is adjusted to alleviate the problem of mode collapse. In addition, natural rain images of different intensities are collected and processed for model training and validation. Compared with the two baseline models, CycleGAN and DerainCycleGAN, the peak signal-to-noise ratio (PSNR) of RCCycleGAN on the test dataset is improved by 2.58 dB and 0.74 dB, and the structural similarity (SSIM) is improved by 18% and 8%, respectively. The ablation experiments are also carried out to validate the effectiveness of the model tuning

    GTAV-NightRain: Photometric Realistic Large-scale Dataset for Night-time Rain Streak Removal

    Full text link
    Rain is transparent, which reflects and refracts light in the scene to the camera. In outdoor vision, rain, especially rain streaks degrade visibility and therefore need to be removed. In existing rain streak removal datasets, although density, scale, direction and intensity have been considered, transparency is not fully taken into account. This problem is particularly serious in night scenes, where the appearance of rain largely depends on the interaction with scene illuminations and changes drastically on different positions within the image. This is problematic, because unrealistic dataset causes serious domain bias. In this paper, we propose GTAV-NightRain dataset, which is a large-scale synthetic night-time rain streak removal dataset. Unlike existing datasets, by using 3D computer graphic platform (namely GTA V), we are allowed to infer the three dimensional interaction between rain and illuminations, which insures the photometric realness. Current release of the dataset contains 12,860 HD rainy images and 1,286 corresponding HD ground truth images in diversified night scenes. A systematic benchmark and analysis are provided along with the dataset to inspire further research

    ASF-Net: Robust Video Deraining via Temporal Alignment and Online Adaptive Learning

    Full text link
    In recent times, learning-based methods for video deraining have demonstrated commendable results. However, there are two critical challenges that these methods are yet to address: exploiting temporal correlations among adjacent frames and ensuring adaptability to unknown real-world scenarios. To overcome these challenges, we explore video deraining from a paradigm design perspective to learning strategy construction. Specifically, we propose a new computational paradigm, Alignment-Shift-Fusion Network (ASF-Net), which incorporates a temporal shift module. This module is novel to this field and provides deeper exploration of temporal information by facilitating the exchange of channel-level information within the feature space. To fully discharge the model's characterization capability, we further construct a LArge-scale RAiny video dataset (LARA) which also supports the development of this community. On the basis of the newly-constructed dataset, we explore the parameters learning process by developing an innovative re-degraded learning strategy. This strategy bridges the gap between synthetic and real-world scenes, resulting in stronger scene adaptability. Our proposed approach exhibits superior performance in three benchmarks and compelling visual quality in real-world scenarios, underscoring its efficacy. The code is available at https://github.com/vis-opt-group/ASF-Net
    corecore