8 research outputs found

    MDM of Hybrid Modes in Multimode Fiber

    Get PDF
    This paper reports on MDM of a combination ofhelical-phased modes comprising ring modes and HG modes.44Gbps data transmission is achieved by a wavelength divisionmultiplexing (WDM) - MDM system of two center-launchedhelical-phased ring modes and two 3ÎŒm radially offset HG modeon wavelengths 1550.12nm and 1551.72nm for a 1500m-longmultimode fiber. The power coupling coefficients, degeneratemode group delays and bit error rates are analyzed for differentHG modes and radial offsets

    Design of LP01 to LPlm Mode Converters for Mode Division Multiplexing

    Get PDF
    Mode division multiplexing (MDM) over few mode fiber (FMF) has been proposed as an alternative solution to tackle the capacity limitations of optical networks based on standard single mode fiber (SMF). These limitations are caused by the fiber nonlinear effects. MDM is realized through excitation of different fiber spatial modes, each mode being an independent transmission channel. Therefore, MDM over FMF requires mode conversion (basically from fundamental mode to higher order modes and vice versa) as well as mode multiplexing and demultiplexing. Mode conversion, multiplexing and demultiplexing can be realized through different techniques. It can be achieved using free-space optics based on matching the profile of an input mode to the profile of an output mode using phase mask or spatial light modulator. Mode conversion and (de)multiplexing can also be achieved using waveguide structures. These mode converters and (de)multiplexers are mainly based on optical fiber and planar waveguide, which include fiber grating, tapering, lanterns, planar lightwave circuit (PLC), photonic crystal fiber (PCF), mode selective coupler (MSC) and Y-junction. It is worth mentioning that more than one technique may be applied to realize a specific converter/ (de)multiplexer for a specific mode. In general, Mode converters and (de)multiplexers based on free space optics are polarization insensitive and wavelength independent, but they result in high insertion loss and are bulky. On the other hand, all-waveguide mode converters and (de)multiplexers have high mode conversion efficiency (less insertion loss and high extinction ratio) and are compact, but they are wavelength dependent. Recently, many research works demonstrate the design, analysis and fabrication of several types of mode converters and (de)multiplexers. However, almost all the proposed devices are specific to a certain number of modes, therefore, they result in mode-specific designs. The explosive growth of traffic over telecommunication networks, especially in the access networks mandates that more and more modes would be (de)multiplexed to respond to the high traffic demands. As a result, proposing a universal mode converter and (de)multiplexer, that can convert and (de)multiplex any required number of modes is needed. In this thesis, mode converters and (de)multiplexers are thoroughly investigated. A universal LP01 to LPlm mode converter and (de)multiplexer is proposed. The mode converter is based on tapered circular waveguides and the (de)multiplexer is based on symmetric directional couplers. An LP01 to LP02 is first introduced. It consists of a tapered circular waveguide followed by a non-tapered circular waveguide. Inside the second waveguide, a circular tapered element is inserted. The initial tapered waveguide allows excitation of LP02 mode as well as other LP0m modes (m > 2). The second waveguide (comprising the circular section and the inner tapered element) is used to make conversion to be mainly from LP01 to LP02. Simulation shows that conversion efficiency of almost 100% at the central wavelength of O- S- and C-band, and above 98% over the S- and C-band is achieved. Moreover, suppression of non-desired higher order modes is more than 10 dB over the whole O-, S- and C-band. In particular, suppression is more than 19 dB over the entire C-band. The analysis also shows that the performance of the mode converter is not sensitive to slight variations of the converter’s parameters. In addition, the same converter can be used for converting LP02 back to LP01. Further, a (de)multiplexer for an LP02 and an LP01 mode is designed using the mode converter combined with a symmetric directional coupler. The multiplexer is broadband and has insertion loss less than 0.5 dB over the C-band. The proposed design is fabricated by inscribing it in the bulk of a borosilicate glass using a femtosecond laser. The converter has an insertion loss of less than 1 dB for the entire C-band and a total length of 2.22mm. this fabricated prototype validates the proposed mode converter design. The LP01 to LP02 mode converter structure can also be used to convert to other LP0m mode by proper tuning its parameters. After extensive simulations and optimizations, an LP01 to LP0m mode converter is proposed. The proposed converter structures are designed not only to provide high performances (low insertion losses and high extinction ratios), but also to be able to be fabricated by respecting the fabrication requirements (in terms of lengths and refractive indices). As a case study, six mode converters, converting LP01 to LP0m, with m = 2 to 7 are reported. The structures have insertion losses ranging from 0.1 dB to 2.5 dB. These performance results outperform all reported similar mode converters. To (de)multiplex the resulting LP0m modes, a (de)multiplexer based on symmetric directional couplers is proposed. This kind of devices are easy to design and fabricate and provide low insertion loss and cross talk. As an example, the first five modes (LP01 to LP05) are (de)multiplexed with an insertion loss less than 2.5 dB and cross talk less than -15 dB at the design wavelength. These results outperform the reported results for similar devices. The LP01 to LP0m mode converter structure is modified by inserting more inner elements to be able to convert to any LPlm mode. Therefore, a universal LP mode converter structure is proposed. The number and parameters of these inner elements depend on the desired LPlm mode. For instance, structures to convert LP01 to LP11, LP21 and LP31 are provided. These modes require between 5 to 6 inner elements with different radii and lengths. The simulation results for these three structures shows that an insertion loss less than 1.9 dB and an extinction ratio higher than 10 dB are achieved for the three modes at the design wavelength of 1550nm. Furthermore, the three modes (LP11, LP21 and LP31) are (d)multiplexed using a symmetric directional coupler with an insertion loss less than 0.9 dB and a cross talk below -17 dB for the three modes at the design wavelength. All the parameters of the presented mode converters and (de)multiplexers are designed to allow them to be fabricated using 3D femtosecond laser inscription technique

    Optical devices and subsystems for few- and multi-mode fiber based networks

    Get PDF

    Spatially integrated erbium-doped fiber amplifiers enabling space-division multiplexing

    Get PDF
    L'augmentation exponentielle de la demande de bande passante pour les communications laisse prĂ©sager une saturation prochaine de la capacitĂ© des rĂ©seaux de tĂ©lĂ©communications qui devrait se matĂ©rialiser au cours de la prochaine dĂ©cennie. En effet, la thĂ©orie de l’information prĂ©dit que les effets non linĂ©aires dans les fibres monomodes limite la capacitĂ© de transmission de celles-ci et peu de gain Ă  ce niveau peut ĂȘtre espĂ©rĂ© des techniques traditionnelles de multiplexage dĂ©veloppĂ©es et utilisĂ©es jusqu’à prĂ©sent dans les systĂšmes Ă  haut dĂ©bit. La dimension spatiale du canal optique est proposĂ©e comme un nouveau degrĂ© de libertĂ© qui peut ĂȘtre utilisĂ© pour augmenter le nombre de canaux de transmission et, par consĂ©quent, rĂ©soudre cette menace de «crise de capacité». Ainsi, inspirĂ©e par les techniques micro-ondes, la technique Ă©mergente appelĂ©e multiplexage spatial (SDM) est une technologie prometteuse pour la crĂ©ation de rĂ©seaux optiques de prochaine gĂ©nĂ©ration. Pour rĂ©aliser le SDM dans les liens de fibres optiques, il faut rĂ©examiner tous les dispositifs intĂ©grĂ©s, les Ă©quipements et les sous-systĂšmes. Parmi ces Ă©lĂ©ments, l'amplificateur optique SDM est critique, en particulier pour les systĂšmes de transmission pour les longues distances. En raison des excellentes caractĂ©ristiques de l'amplificateur Ă  fibre dopĂ©e Ă  l'erbium (EDFA) utilisĂ© dans les systĂšmes actuels de pointe, l'EDFA est Ă  nouveau un candidat de choix pour la mise en Ɠuvre des amplificateurs SDM pratiques. Toutefois, Ă©tant donnĂ© que le SDM introduit une variation spatiale du champ dans le plan transversal de la fibre, les amplificateurs Ă  fibre dopĂ©e Ă  l'erbium spatialement intĂ©grĂ©s (SIEDFA) nĂ©cessitent une conception soignĂ©e. Dans cette thĂšse, nous examinons tout d'abord les progrĂšs rĂ©cents du SDM, en particulier les amplificateurs optiques SDM. Ensuite, nous identifions et discutons les principaux enjeux des SIEDFA qui exigent un examen scientifique. Suite Ă  cela, la thĂ©orie des EDFA est briĂšvement prĂ©sentĂ©e et une modĂ©lisation numĂ©rique pouvant ĂȘtre utilisĂ©e pour simuler les SIEDFA est proposĂ©e. Sur la base d'un outil de simulation fait maison, nous proposons une nouvelle conception des profils de dopage annulaire des fibres Ă  quelques-modes dopĂ©es Ă  l'erbium (ED-FMF) et nous Ă©valuons numĂ©riquement la performance d’un amplificateur Ă  un Ă©tage, avec fibre Ă  dopage annulaire, Ă  ainsi qu’un amplificateur Ă  double Ă©tage pour les communications sur des fibres ne comportant que quelques modes. Par la suite, nous concevons des fibres dopĂ©es Ă  l'erbium avec une gaine annulaire et multi-cƓurs (ED-MCF). Nous avons Ă©valuĂ© numĂ©riquement le recouvrement de la pompe avec les multiples cƓurs de ces amplificateurs. En plus de la conception, nous fabriquons et caractĂ©risons une fibre multi-cƓurs Ă  quelques modes dopĂ©es Ă  l'erbium. Nous rĂ©alisons la premiĂšre dĂ©monstration des amplificateurs Ă  fibre optique spatialement intĂ©grĂ©s incorporant de telles fibres dopĂ©es. Enfin, nous prĂ©sentons les conclusions ainsi que les perspectives de cette recherche. La recherche et le dĂ©veloppement des SIEDFA offriront d'Ă©normes avantages non seulement pour les systĂšmes de transmission future SDM, mais aussi pour les systĂšmes de transmission monomode sur des fibres standards Ă  un cƓur car ils permettent de remplacer plusieurs amplificateurs par un amplificateur intĂ©grĂ©.The exponential increase of communication bandwidth demand is giving rise to the so-called ‘capacity crunch’ expected to materialize within the next decade. Due to the nonlinear limit of the single mode fiber predicted by the information theory, all the state-of-the-art techniques which have so far been developed and utilized in order to extend the optical fiber communication capacity are exhausted. The spatial domain of the lightwave links is proposed as a new degree of freedom that can be employed to increase the number of transmission paths and, subsequently, overcome the looming ‘capacity crunch’. Therefore, the emerging technique named space-division multiplexing (SDM) is a promising candidate for creating next-generation optical networks. To realize SDM in optical fiber links, one needs to investigate novel spatially integrated devices, equipment, and subsystems. Among these elements, the SDM amplifier is a critical subsystem, in particular for the long-haul transmission system. Due to the excellent features of the erbium-doped fiber amplifier (EDFA) used in current state-of-the-art systems, the EDFA is again a prime candidate for implementing practical SDM amplifiers. However, since the SDM introduces a spatial variation of the field in the transverse plane of the optical fibers, spatially integrated erbium-doped fiber amplifiers (SIEDFA) require a careful design. In this thesis, we firstly review the recent progress in SDM, in particular, the SDM optical amplifiers. Next, we identify and discuss the key issues of SIEDFA that require scientific investigation. After that, the EDFA theory is briefly introduced and a corresponding numerical modeling that can be used for simulating the SIEDFA is proposed. Based on a home-made simulation tool, we propose a novel design of an annular based doping profile of few-mode erbium-doped fibers (FM-EDF) and numerically evaluate the performance of single stage as well as double-stage few-mode erbium-doped fiber amplifiers (FM-EDFA) based on such fibers. Afterward, we design annular-cladding erbium-doped multicore fibers (MC-EDF) and numerically evaluate the cladding pumped multicore erbium-doped fiber amplifier (MC-EDFA) based on these fibers as well. In addition to fiber design, we fabricate and characterize a multicore few-mode erbium-doped fiber (MC-FM-EDF), and perform the first demonstration of the spatially integrated optical fiber amplifiers incorporating such specialty doped fibers. Finally, we present the conclusions as well as the perspectives of this research. In general, the investigation and development of the SIEDFA will bring tremendous benefits not only for future SDM transmission systems but also for current state-of-the-art single-mode single-core transmission systems by replacing plural amplifiers by one integrated amplifier

    Design and characterization of few-mode fibers for space division multiplexing on fiber eigenmodes

    Get PDF
    La croissance constante et exponentielle de la demande de trafic de donnĂ©es Internet conduit nos rĂ©seaux de tĂ©lĂ©communications optiques, principalement composĂ©s de liaisons de fibre monomode, Ă  une pĂ©nurie imminente de capacitĂ©. La limite non linĂ©aire de la fibre monomode, prĂ©dite par la thĂ©orie de l'information, ne laisse aucune place Ă  l'amĂ©lioration de la capacitĂ© de communication par fibre optique. Dans ce contexte, la prochaine technologie de rupture dans les transmissions optiques Ă  haute capacitĂ© devrait ĂȘtre le multiplexage par rĂ©partition spatiale (SDM). La base du SDM consiste Ă  utiliser diffĂ©rents canaux spatiaux d'une seule fibre optique pour transmettre des donnĂ©es indĂ©pendantes. Le SDM fournit ainsi une augmentation de la capacitĂ© de transport de donnĂ©es d'un facteur qui dĂ©pend du nombre de chemins spatiaux qui sont Ă©tablis. Une façon de rĂ©aliser le SDM consiste Ă  utiliser des fibres faiblement multimodes (FMF) spĂ©cialisĂ©es, conçues pour prĂ©senter un couplage faible entre les modes guidĂ©s. Un traitement MIMO rĂ©duit peut alors ĂȘtre utilisĂ© pour annuler le couplage rĂ©siduel des modes. Dans cette thĂšse, nous donnons tout d'abord un aperçu des progrĂšs rĂ©cents du multiplexage par rĂ©partition de modes (MDM). Les modes Ă  polarisation linĂ©aire (LP), les modes de moment angulaire orbital (OAM) et les modes vectoriels reprĂ©sentent diffĂ©rentes bases de modes orthogonaux possibles dans la fibre. Nous comparons les travaux utilisant ces modes en termes de conception de fibre proposĂ©e, nombre de modes, complexitĂ© MIMO et rĂ©sultats expĂ©rimentaux de transmission de donnĂ©es. Ensuite, nous introduisons la modĂ©lisation de la fibre optique rĂ©alisĂ©e avec les solveurs numĂ©riques de COMSOL Multiphysics, et nous discutons de quelques travaux utilisant cette modĂ©lisation de fibre. Nous proposons une nouvelle FMF, composĂ©e d'un noyau hautement elliptique et d'une tranchĂ©e adjacente ajoutĂ©e pour rĂ©duire la perte de courbure des modes d'ordre supĂ©rieur. La fibre est conçue et optimisĂ©e pour prendre en charge cinq modes spatiaux avec une dĂ©gĂ©nĂ©rescence de polarisation double, pour un total de dix canaux. La fibre proposĂ©e montre une diffĂ©rence d'indice effectif entre les modes spatiaux supĂ©rieure Ă  1 × 10-3sur la bande C. Ensuite, nous fabriquons la fibre avec un procĂ©dĂ© standard de dĂ©pĂŽt chimique en phase vapeur modifiĂ© (MCVD), et nous caractĂ©risons la fibre en laboratoire. La caractĂ©risation expĂ©rimentale a rĂ©vĂ©lĂ© que la fibre prĂ©sente une propriĂ©tĂ© de maintien de polarisation. Ceci est obtenu grĂące Ă  la combinaison de la structure centrale asymĂ©trique et de la contrainte thermique introduite lors de la fabrication. Nous mesurons la birĂ©fringence avec une technique de rĂ©seau de Bragg inscrit dans la fibre (FBG). En incluant la contrainte thermique dans notre modĂ©lisation de fibre, un bon accord est obtenu entre la birĂ©fringence simulĂ©e et mesurĂ©e. Nous avons rĂ©ussi Ă  effectuer la premiĂšre transmission de donnĂ©es sur la fibre proposĂ©e, en transmettant deux signaux QPSK sur les deux polarisations de chaque mode spatial, sans utiliser de traitement MIMO. Enfin, nous prĂ©sentons une amĂ©lioration d'une technique d'interfĂ©romĂ©trie hyperfrĂ©quence (MICT) prĂ©cĂ©demment proposĂ©e, afin de mesurer expĂ©rimentalement la perte en fonction du mode (MDL) des groupes de modes FMF. En conclusion, nous rĂ©sumons les rĂ©sultats et prĂ©sentons les perspectives d'avenir de cette recherche. En rĂ©sumĂ©, de nouveaux FMF doivent ĂȘtre Ă©tudiĂ©s si nous voulons rĂ©soudre la pĂ©nurie imminente de capacitĂ© de nos technologies systĂšme. Les rĂ©sultats de cette thĂšse indique que le FMF Ă  maintien de polarisation proposĂ©e dans cette recherche reprĂ©sente une amĂ©lioration significative dans le domaine des systĂšmes de transmission MDM sans MIMO pour des liaisons de communication courtes ; c’est-Ă -dire distribuant des donnĂ©es sur une longueur infĂ©rieure Ă  10 km. Nous espĂ©rons que ce travail conduira au dĂ©veloppement de nouveaux composants SD Mutilisant cette fibre, tels que de nouveaux amplificateurs Ă  fibre, ou de nouveaux multiplexeurs/dĂ©multiplexeurs, comme par exemple des coupleurs en mode fibre fusionnĂ©e ou des dispositifs photoniques au silicium.The constant and exponential growth of Internet data traffic demand is driving our optical telecommunication networks, mainly composed of single-mode fiber links, to an imminent capacity shortage. The nonlinear limit of the single-mode fiber, predicted by the information theory, leave no room for optical fiber communication capacity improvements. In this direction, the next disruptive technology in high-capacity communication transmissions is expected to be Space Division Multiplexing (SDM). The basic of SDM consists of using different spatial channels of a single optical fiber to transmit information data. SDM thus provides an increase in the data-carrying capacity by a factor that depends on the number of spatial paths that are established. A way to realize SDM is through the use of specialty few-mode fibers (FMFs), designed to have a weak coupling between the guided modes. A reduced MIMO processing can be used to undo the residual mode coupling. In this thesis, we firstly give an overview of the recent progress in mode division multiplexing (MDM). Linearly polarized (LP) modes, orbital angular momentum (OAM) modes and vector modes represent the possible orthogonal modes guided into the fiber. We compare works, making use of those modes, in terms of proposed fiber design, number of modes, MIMO complexity and data transmission experiments. After that, we introduce the optical fiber modelling performed with the numerical solvers of COMSOL Multiphysics, and we discuss some works making use of this fiber modelling. Next, we propose a novel FMF, composed of a highly elliptical core and a surrounding trench added to reduce the bending loss of the higher order modes. The fiber is designed and optimized to support five spatial modes with twofold polarization degeneracy, for a total of ten channels. The proposed fiber shows an effective index difference between the spatial modes higher than 1×10-3 over the C-band. Afterwards, we fabricate the fiber with standard modified chemical vapor deposition (MCVD) process, and we characterize the fiber in the laboratory. The experimental characterization revealed the polarization maintaining properties of the fiber. This is obtained with the combination of the asymmetric core structure and the thermal stress introduced during the fabrication. We measure the birefringence with a fiber Bragg grating (FBG) technique, and we included the thermal stress in our fiber modelling. A good agreement was found between the simulated and measured birefringence. We successfully demonstrate the first data transmission over the proposed fiber, by transmitting two QPSK signals over the two polarizations of each spatial mode, without the use of any MIMO processing. Lastly, we present an improvement of a previously proposed microwave interferometric technique (MICT), in order to experimentally measure the mode dependent loss (MDL) of FMF mode groups. Finally, we present the conclusions and the future perspectives of this research. To conclude, novel FMFs need to be investigated if we want to solve the imminent capacity shortage of our system technologies. We truly believe that the polarization-maintaining FMF proposed in this research represents a significant improvement to the field of MIMO-free MDM transmission systems for short communication links, distributing data over length less than 10 km. We hope that this work will drive the development of new SDM components making use of this fiber, such as new fiber amplifiers, or new mux/demux, as for example fused fiber mode couplers or silicon photonic devices
    corecore