3,769 research outputs found

    Perspective: The experimentalist and the problem of turbulence in the age of supercomputers

    Get PDF
    Due to the rising capabilities of computational fluid mechanics (CFD), the role of the experimentalist in solving the problem of turbulence has come under serious question. However after much initial excitement by the prospect of CFD, the basic understanding of non-linear fluid phenomena such as turbulence still remains a grand challenge and will remain so into the unforeseeable future. It appears that in order to accelerate the development of a comprehensive and practical understanding and modeling of turbulence, it is required that a constructive synergism between experiments and simulations be created. Moreover, the digital revolution has helped experimental fluid mechanics to acquire new capabilities in the whole-field flow mapping technique which enables it to efficiently interface with CFD. This new horizon is promising in its capabilities to guide, validate and actively interact in conducting reliable simulations of turbulent flows

    Volume rendering multivariate data to visualize meteorological simulations: a case study

    Get PDF
    Journal ArticleHigh resolution computational weather models are becoming increasing complex. However, the analysis of these models has not benefited from recent advancements in volume visualization. This case study applies the ideas and techniques from multi-dimensional transfer function based volume rendering to the multivariate weather simulations. The specific goal of identifying frontal zones is addressed. By combining temperature and humidity as a multivariate field, the frontal zones are more readily identified thereby assisting the meteorologists in their analysis tasks

    Interactive ray tracing for volume visualization

    Get PDF
    Journal ArticleWe present a brute-force ray tracing system for interactive volume visualization, The system runs on a conventional (distributed) shared-memory multiprocessor machine. For each pixel we trace a ray through a volume to compute the color for that pixel. Although this method has high intrinsic computational cost, its simplicity and scalability make it ideal for large datasets on current high-end parallel systems

    Large-scale structure in the far field of buoyant jets

    Get PDF
    The flow structure and entrainment mechanisms in the far field of a round vertical buoyant jet have been studied experimentally by use of an optical technique based on laser-induced fluorescence (LIF). A large number of essentially instantaneous tracer concentration profiles were recorded for each experimental run by combining LIF with linear photodiode array imaging and high-speed digital data acquisition. Analysis of the resulting high-resolution flow images indicates that the far-field region is dominated by the periodic passage of structures spanning the entire radial flow extent. Ambient fluid is entrained by vortical motions and is transported to regions deep into the flow interior. Correlation analysis discloses that the passage frequency of the structures scales with the local mean velocity and flow width. Conditional averaging of the data indicates that the downstream frontal region of the structure is well mixed and at higher concentration level than the back and side regions where ambient fluid is intermittently present. This results in an axial concentration gradient within the structure, analogous to the ramp-like pattern previously observed in heated air jets. In comparison to the momentum-driven flow the ambient fluid presence in the flow interior is greatly increased when body forces are the driving mechanism. This appears to result from the influence of buoyancy forces in the production of turbulent vortices at the integral scale. An important feature of both the momentum-driven and buoyancy-driven flows investigated is the strongly intermittent character of the concentration field. This raises the issue of the appropriateness of gradient-diffusion theories for the description of such flows

    An Algorithm on Generalized Un Sharp Masking for Sharpness and Contrast of an Exploratory Data Model

    Full text link
    In the applications like medical radiography enhancing movie features and observing the planets it is necessary to enhance the contrast and sharpness of an image. The model proposes a generalized unsharp masking algorithm using the exploratory data model as a unified framework. The proposed algorithm is designed as to solve simultaneously enhancing contrast and sharpness by means of individual treatment of the model component and the residual, reducing the halo effect by means of an edge-preserving filter, solving the out of range problem by means of log ratio and tangent operations. Here is a new system called the tangent system which is based upon a specific bargeman divergence. Experimental results show that the proposed algorithm is able to significantly improve the contrast and sharpness of an image. Using this algorithm user can adjust the two parameters the contrast and sharpness to have desired output

    Doctor of Philosophy

    Get PDF
    dissertationRay tracing presents an efficient rendering algorithm for scientific visualization using common visualization tools and scales with increasingly large geometry counts while allowing for accurate physically-based visualization and analysis, which enables enhanced rendering and new visualization techniques. Interactivity is of great importance for data exploration and analysis in order to gain insight into large-scale data. Increasingly large data sizes are pushing the limits of brute-force rasterization algorithms present in the most widely-used visualization software. Interactive ray tracing presents an alternative rendering solution which scales well on multicore shared memory machines and multinode distributed systems while scaling with increasing geometry counts through logarithmic acceleration structure traversals. Ray tracing within existing tools also provides enhanced rendering options over current implementations, giving users additional insight from better depth cues while also enabling publication-quality rendering and new models of visualization such as replicating photographic visualization techniques

    Evaluation of diffuse-illumination holographic cinematography in a flutter cascade

    Get PDF
    Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed
    corecore