210 research outputs found
Development of nanostructured supported photocatalysts for hydrogen production and inorganic pollutants removal
Semiconductor photocatalysis has emerged as one of the most promising approach to exploit a renewable energy source (i.e. sunlight irradiation) for several environmental purposes such as the production of clean energy (e.g. photocatalytic H2 evolution), the removal of organic and inorganic pollutants in natural water, purification of air and antibacterial activity.
In view of these recent trends, the focus of this thesis was directed towards the study of different supported photo(electro)catalytic materials for topical environmental applications:
i) Photocatalytic hydrogen gas evolution from aqueous solutions under UV light irradiation (365 nm) over highly ordered TiO2 nanotubes decorated through a sputtering/dewetting approach with a well-defined stacked co-catalyst (a WO3 layer decorated with Pt NPs);
ii) Photocatalytic hydrogen gas evolution from aqueous solutions under UV light irradiation (365 nm) over highly ordered TiO2 nanotubes decorated through a sputtering/dewetting approach with dewetted-alloyed NiCu nanoparticles;
iii) Photocatalytic reduction/scavenging of inorganic mercury (Hg(II)) from water under solar light irradiation over templated-dewetted Au on TiO2 nanotubes;
iv) Photoelectrocatalytic oxidation/abatement of inorganic arsenic (As(III)) over hematite-based photoanodes under solar light irradiation.
After a general introduction about photocatalytic processes and materials, each chapter of this dissertation contains the outcomes of the above listed studies
Development of nanostructured supported photocatalysts for hydrogen production and inorganic pollutants removal
Semiconductor photocatalysis has emerged as one of the most promising approach to exploit a renewable energy source (i.e. sunlight irradiation) for several environmental purposes such as the production of clean energy (e.g. photocatalytic H2 evolution), the removal of organic and inorganic pollutants in natural water, purification of air and antibacterial activity.
In view of these recent trends, the focus of this thesis was directed towards the study of different supported photo(electro)catalytic materials for topical environmental applications:
i) Photocatalytic hydrogen gas evolution from aqueous solutions under UV light irradiation (365 nm) over highly ordered TiO2 nanotubes decorated through a sputtering/dewetting approach with a well-defined stacked co-catalyst (a WO3 layer decorated with Pt NPs);
ii) Photocatalytic hydrogen gas evolution from aqueous solutions under UV light irradiation (365 nm) over highly ordered TiO2 nanotubes decorated through a sputtering/dewetting approach with dewetted-alloyed NiCu nanoparticles;
iii) Photocatalytic reduction/scavenging of inorganic mercury (Hg(II)) from water under solar light irradiation over templated-dewetted Au on TiO2 nanotubes;
iv) Photoelectrocatalytic oxidation/abatement of inorganic arsenic (As(III)) over hematite-based photoanodes under solar light irradiation.
After a general introduction about photocatalytic processes and materials, each chapter of this dissertation contains the outcomes of the above listed studies
Photocatalytic Adsorbents Nanoparticles
Photocatalysis and high adsorption coupling in a same nanoparticle have been emerged as a prominent class of cost-effective materials to degrade recalcitrant contaminants in wastewater. α-Hematite, metal-organic frameworks and TiO2 nanocomposites have been investigated due to their features that overcome the other conventional photocatalysts and adsorbents to remove contaminants in aqueous medium. Several methods are applied to synthesize these nanostructures with different properties and physicochemical features and a brief review is shown to these well-established techniques to provide an understanding for the construction and application of these advanced materials
Advances of nanotechnology in agro-environmental studies
With the increase in the world population and the demand for food, new agricultural practices have been developed to improve food production through the use of more effective pesticides and fertilisers. These technologies can lead to an uncontrolled release of undesired substances into the environment, with the potential to contaminate soil and groundwater. Today, nanotechnology represents a promising approach to improve agricultural production and remediate polluted sites. This paper reviews the recent applications of nanotechnologies in agro-environmental studies with particular attention to the fate of nanomaterials once introduced in water and soil, to the advantages of their use and their possible toxicology. Findings show that the use of nanomaterials can improve the quality of the environment and help detect and remediate polluted sites. Only a small number of nanomaterials demonstrated potential toxic effects. These are discussed in detail
Assessment of the Arsenic Removal From Water Using Lanthanum Ferrite
The catalytic performance of a perovskite-type lanthanum ferrite LaFeO3 to remove arsenic from water has been investigates for the first time. LaFeO3 was prepared by citrate auto-combustion of dry gel obtained from a solution of the corresponding nitrates poured into citric acid solution. Kinetic studies were performed in the dark with As(V) and in the dark and under UV-C irradiation at pH 6–7 with As(III) (both 1 mg L−1), and As : Fe molar ratios (MR) of 1 : 10 and 1 : 100 using the LaFeO3 catalyst. As(V) was removed from solution after 60 min in the dark in 7 % and in 47 % for MR=1 : 10 and MR=1 : 100, respectively, indicating the importance of the amount of the iron material on the removal. Oxidation of As(III) in the dark was negligible after 60 min in contact with the solid sample, but complete removal of As(III) was observed within 60 min of irradiation at 254 nm, due to As(III) photooxidation to As(V) and to As(III) sorption to a minor extent. Morphological and microstructural studies of the catalyst complement the catalytic testing. This work demonstrates that LaFeO3 can be used for the removal of As(III) from highly arsenic contaminated water
Assessment of the Arsenic Removal From Water Using Lanthanum Ferrite
The catalytic performance of a perovskite-type lanthanum ferrite LaFeO3 to remove arsenic from water has been investigates for the first time. LaFeO3 was prepared by citrate auto-combustion of dry gel obtained from a solution of the corresponding nitrates poured into citric acid solution. Kinetic studies were performed in the dark with As(V) and in the dark and under UV-C irradiation at pH 6–7 with As(III) (both 1 mg L−1), and As : Fe molar ratios (MR) of 1 : 10 and 1 : 100 using the LaFeO3 catalyst. As(V) was removed from solution after 60 min in the dark in 7 % and in 47 % for MR=1 : 10 and MR=1 : 100, respectively, indicating the importance of the amount of the iron material on the removal. Oxidation of As(III) in the dark was negligible after 60 min in contact with the solid sample, but complete removal of As(III) was observed within 60 min of irradiation at 254 nm, due to As(III) photooxidation to As(V) and to As(III) sorption to a minor extent. Morphological and microstructural studies of the catalyst complement the catalytic testing. This work demonstrates that LaFeO3 can be used for the removal of As(III) from highly arsenic contaminated water.Fil: García, Fabiana Elena. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; ArgentinaFil: Litter, Marta Irene. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; ArgentinaFil: Sora, Isabella Natali. Università Degli Studi Di Bergamo; Itali
Heterogeneous Fenton catalysts: A review of recent advances /
Hosted in Science DirectHeterogeneous Fenton catalysts are emerging as excellent materials for applications related to water purification. In this review, recent trends in the synthesis and application of heterogeneous Fenton catalysts for the abatement of organic pollutants and disinfection of microorganisms are discussed. It is noted that as the complexity of cell wall increases, the resistance level towards various disinfectants increases and it requires either harsh conditions or longer exposure time for the complete disinfection. In case of viruses, enveloped viruses (e.g. SARS-CoV-2) are found to be more susceptible to disinfectants than the non-enveloped viruses. The
introduction of plasmonic materials with the Fenton catalysts broadens the visible light absorption efficiency of the hybrid material, and incorporation of semiconductor material improves the rate of regeneration of Fe(II) from Fe(III). A special emphasis is given to the use of Fenton catalysts for antibacterial applications. Composite materials of magnetite and ferrites remain a champion in this area because of their easy separation and reuse, owing to their magnetic properties. Iron minerals supported on clay materials, perovskites, carbon materials, zeolites and metal-organic frameworks (MOFs) dramatically increase the catalytic degradation
rate of contaminants by providing high surface area, good mechanical stability, and improved electron transfer. Moreover, insights to the zero-valent iron and its capacity to remove a wide range of organic pollutants, heavy metals and bacterial contamination are also discussed. Real world applications and the role of natural organic matter are summarised. Parameter optimisation (e.g. light source, dosage of catalyst, concentration of H2O2 etc.), sustainable models for the reusability or recyclability of the catalyst and the theoretical understanding and mechanistic aspects of the photo-Fenton process are also explained. Additionally, this review
summarises the opportunities and future directions of research in the heterogeneous Fenton catalysis.ye
Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges
A major and growing concern within society is the lack of innovative and effective solutions to mitigate the challenge of environmental pollution. Uncontrolled release of pollutants into the environment as a result of urbanisation and industrialisation is a staggering problem of global concern. Although, the eco-toxicity of nanotechnology is still an issue of debate, however, nanoremediation is a promising emerging technology to tackle environmental contamination, especially dealing with recalcitrant contaminants. Nanoremediation represents an innovative approach for safe and sustainable remediation of persistent organic compounds such as pesticides, chlorinated solvents, brominated or halogenated chemicals, perfluoroalkyl and polyfluoroalkyl substances (PFAS), and heavy metals. This comprehensive review article provides a critical outlook on the recent advances and future perspectives of nanoremediation technologies such as photocatalysis, nano-sensing etc., applied for environmental decontamination. Moreover, sustainability assessment of nanoremediation technologies was taken into consideration for tackling legacy contamination with special focus on health and environmental impacts. The review further outlines the ecological implications of nanotechnology and provides consensus recommendations on the use of nanotechnology for a better present and sustainable futur
Plasmonic-based nanomaterials for environmental remediation /
Technologies based on nanomaterials are gaining increased attention as a promising method for the removal of
contaminants and inactivation/killing of pathogenic microorganisms. Plasmonic nanomaterials prove to be
promising in this field due to their tailored properties, including optical, photothermal, conducive, and catalytic
properties. These properties have been widely used for the design of efficient materials for the environmental
applications by improving the light absorption efficiency, redox reaction kinetic rates, and charge separation
efficiency. In the current review, the tailored properties of plasmonic nanomaterials and how they are employed
for the design of efficient environment-functional materials are discussed in detail. A number of examples for the
development of composite plasmonic nanostructures such as metal/semiconductor, metal/insulator/semiconductor, and metal/semiconductor/semiconductor are provided.
In addition, the recent achievements in plasmonic nanomaterials for the removal of contaminants (in both
liquid and gaseous media) and the inactivation of pathogenic microorganisms are described with a number of
examples. The major challenges in employing plasmonic nanomaterials for environmental applications are
identified as: (1) complete mineralization of contaminants must be achieved in some cases due to the potential
risks of intermediates; (2) the cost of plasmonic nanomaterials and the associated treatment processes need to be
significantly decreased; (3) the stability of plasmonic nanomaterials in real environmental matrices is urgently
needed to be improved; (4) the ecological safety of these nanomaterials should be investigated extensively.
However, it is expected that with continuous progress of this field, plasmonic nanotechnology can be used for
environmental applications more widely, not only for the examples shown in the current review, but also for soil
remediation, resource recovery during waste treatment processes, and detection of contaminants. Finally, the
toxicity of engineered plasmonic nanomaterials, the possibility of their release, fate, and transformation, in the
environment and subsequent impact on the health of ecosystem are also addressed in detail.ye
- …
