164,215 research outputs found
Value of Ascitic Lipids in the Differentiation between Cirrhotic and Malignant Ascites
Ascitic fluid concentrations of cholesterol, triglycerides and phospholipids, were compared with ascitic fluid total protein in 40 patients with chronic liver disease, 51patients with various neoplasms and 1 patient with cardiac failure. Seven patients withboth chronic liver disease and malignancy were considered separately. The first 54 patients (23 cirrhotic and 31 with malignancy) were used to determine median values and ranges and to define the most suitable cutoff concentrations between both groups. Median values for cholesterol (75 mg per dl), phospholipids (0.79 mmole per liter), triglycerides (75 mg per dl) and protein (3.8 gm per dl)were higher in malignant ascites compared to ascitic fluid concentrations of cholesterol (20 mg per dl), phospholipids (0.33 mmole per liter), triglycerides (51 mg per dl) and protein (1.9 gm per dl) in patients withcirrhosis. The best discrimination values were 48 mg per dl for cholesterol, 0.6 mmole per liter for phospholipids, 65 mg per dl for triglycerides and 2.5 gm per dl for protein. Application of these cutoff points to 38 subsequent patients (17 cirrhotic, 1 with cardiac failure and 20 with malignancy) revealed an efficiency of 86.8% for cholesterol, 86.8% for phospholipids, 68.4% for triglycerides and 79.0% for protein. From the data of all 92 patients, an efficiency of 92.3% forcholesterol, 79.4% for phospholipids, 72.8% for triglycerides and 79.4% for protein was calculated.
We conclude that ascitic fluid cholesterol determination offers an excellent, cost-effective discrimination of ascites due to cirrhosis vs. ascites caused by malignancies
General model of phospholipid bilayers in fluid phase within the single chain mean field theory
Coarse-grained model for saturated (DCPC, DLPC, DMPC, DPPC, DSPC) and
unsaturated (POPC, DOPC) phospholipids is introduced within the Single Chain
Mean Field theory. A single set of parameters adjusted for DMPC bilayers gives
an adequate description of equilibrium and mechanical properties of a range of
saturated lipid molecules that differ only in length of their hydrophobic tails
and unsaturated (POPC, DOPC) phospholipids which have double bonds in the
tails. A double bond is modeled with a fixed angle of 120 degrees, while the
rest of the parameters are kept the same as saturated lipids. The thickness of
the bilayer and its hydrophobic core, the compressibility and the equilibrium
area per lipid correspond to experimentally measured values for each lipid,
changing linearly with the length of the tail. The model for unsaturated
phospholipids also fetches main thermodynamical properties of the bilayers.
This model is used for an accurate estimation of the free energies of the
compressed or stretched bilayers in stacks or multilayers and gives reasonable
estimates for free energies. The proposed model may further be used for studies
of mixtures of lipids, small molecule inclusions, interactions of bilayers with
embedded proteins
Dietary N-3 polyunsaturated fatty acids decrease biliary cholesterol saturation in gallstone disease
Because fatty acid composition of biliary phospholipids influences cholesterol secretion into bile, we investigated whether replacement of n-1 monounsaturated or n-6 polyunsaturated fatty acids with n-3 polyunsaturated fatty acids in biliary phosphatidylcholines reduces supersaturation with cholesterol and prevents precipitation of cholesterol crystals in bile of gallstone patients. Seven patients with radiolucent gallstones in functioning gallbladders were studied before (control) and after 5 wk of dietary supplementation with marine fish oil (11.3 gm/day = 3.75 gm n-3 polyunsaturated fatty acids/day). Duodenal bile was collected for analysis during intravenous infusion of cholecystokinin. Gallbladder emptying in response to cholecystokinin was comparable before and during intake of n-3 polyunsaturated fatty acids. Intake of n-3 polyunsaturated fatty acids increased (p < 0.001) the fractions of eicosapentaenoic and docosahexaenoic acids and decreased the fractions of linoleic (p < 0.001) and arachidonic acids (p < 0.02) in biliary phospholipids. Concomitantly, the molar ratio of cholesterol to phospholipids decreased (-19%; p < 0.05). As a consequence, the cholesterol saturation index was reduced by -25% (p = 0.01), from 1.60 ± 0.44 to 1.24 ± 0.38. However, in vitro nucleation time of duodenal bile was not prolonged. The decrease in cholesterol saturation was not sufficient to prevent nucleation of cholesterol crystals in bile of gallstone patients. In conclusion, our data suggest that cholesterol saturation can be influenced by the fatty acid composition of the phosphatidylcholines secreted in bile
Do anionic phospholipids serve as cofactors or second messengers for the regulation of activity of cloned ATP-sensitive K+ channels?
The regulation of ion channels by anionic phospholipids is currently very topical. An outstanding issue is whether phosphatidylinositol 4,5-diphosphate and related species act as true second messengers in signaling or behave in a manner analogous to an enzymatic cofactor. This question is especially pertinent regarding ATP-sensitive K+ channels in smooth muscle, for which there is substantial literature supporting inhibitory regulation by hormones. In this study, we have examined regulation of the potential cloned equivalents of the smooth muscle ATP-sensitive K+ channel (SUR2B/Kir6.1 and SUR2B/Kir6.2). We find that both can be inhibited via the G(q/11)-coupled muscarinic M3 receptor but that the pathways by which this occurs are different. Our data show that SUR2B/Kir6.1 is inhibited by protein kinase C and binds anionic phospholipids with high affinity, such that potential physiological fluctuations in their levels do not influence channel activity. In contrast, Kir6.2 is not regulated by protein kinase C but binds anionic phospholipids with low affinity. In this case, phosphatidylinositol 4,5-diphosphate and related species have the potential to act as second messengers in signaling. Thus, Kir6.1 and Kir6.2 are regulated by distinct inhibitory mechanisms
Recommended from our members
Substrate-Specific Inhibition Constants for Phospholipase A2 Acting on Unique Phospholipid Substrates in Mixed Micelles and Membranes Using Lipidomics.
Assaying lipolytic enzymes is extremely challenging because they act on water-insoluble lipid substrates, which are normally components of micelles, vesicles, and cellular membranes. We extended a new lipidomics-based liquid chromatographic-mass spectrometric assay for phospholipases A2 to perform inhibition analysis using a variety of commercially available synthetic and natural phospholipids as substrates. Potent and selective inhibitors of three recombinant human enzymes, including cytosolic, calcium-independent, and secreted phospholipases A2 were used to establish and validate this assay. This is a novel use of dose-response curves with a mixture of phospholipid substrates, not previously feasible using traditional radioactive assays. The new application of lipidomics to developing assays for lipolytic enzymes revolutionizes in vitro testing for the discovery of potent and selective inhibitors using mixtures of membranelike substrates
Detection of Metabolites by Proton Ex Vivo NMR, in Vivo MR Spectroscopy Peaks and Tissue Content Analysis: Biochemical-Magnetic Resonance Correlation: Preliminary Results
*Aim*: Metabolite concentrations by in vivo magnetic resonance spectroscopy and ex vivo NMR spectroscopy were compared with excised normal human tissue relaxation times and tissue homogenate contents.

*Hypothesis*: Biochemical analysis combined with NMR and MR spectroscopy defines better tissue analysis.

*Materials and Methods*: Metabolites were measured using peak area, amplitude and molecular weights of metabolites in the reference solutions. In normal brain and heart autopsy, muscle and liver biopsy tissue ex vivo NMR peaks and spin-lattice (T1) and spin-spin (T2) relaxation times, were compared with diseased tissue NMR data in meningioma brain, myocardial infarct heart, duchene-muscular-dystrophy muscle and diffused-liver-injury liver after respective in vivo proton MR spectroscopy was done. NMR data was compared with tissue homogenate contents and serum levels of biochemical parameters.

*Results*: The quantitation of smaller NMR visible metabolites was feasible for both ex vivo NMR and in vivo MR spectroscopy. Ex vivo H-1 NMR and in vivo MRS metabolite characteristic peaks (disease/normal data represented as fold change), T1 and T2, and metabolites in tissue homogenate and serum indicated muscle fibrosis in DMD, cardiac energy depletion in MI heart, neuronal dysfunction in meningioma brain and carbohydrate-lipid metabolic crisis in DLI liver tissues.

*Conclusion*: This preliminary report highlights the biochemical-magnetic resonance correlation as basis of magnetic resonance spectroscopic imaging data interpretation of disease
Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid Epoxide Metabolites in Rat Brain Neutral Lipids.
In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2 -induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2 -induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2 -asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic-lipophilic-balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2 -asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations
Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential
The apigenin-phospholipid phytosome (APLC) was developed to improve the aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity of apigenin. The APLC synthesis was guided by a full factorial design strategy, incorporating specific formulation and process variables to deliver an optimized product. The design-optimized formulation was assayed for aqueous solubility, in vitro dissolution, pharmacokinetics, and antioxidant activity. The pharmacological evaluation was carried out by assessing its effects on carbon tetrachloride-induced elevation of liver function marker enzymes in a rat model. The antioxidant activity was assessed by studying its effects on the liver antioxidant marker enzymes. The developed model was validated using the design-optimized levels of formulation and process variables. The physical-chemical characterization confirmed the formation of phytosomes. The optimized formulation demonstrated over 36-fold higher aqueous solubility of apigenin, compared to that of pure apigenin. The formulation also exhibited a significantly higher rate and extent of apigenin release in dissolution studies. The pharmacokinetic analysis revealed a significant enhancement in the oral bioavailability of apigenin from the prepared formulation, compared to pure apigenin. The liver function tests indicated that the prepared phytosome showed a significantly improved restoration of all carbon tetrachloride-elevated rat liver function marker enzymes. The prepared formulation also exhibited antioxidant potential by significantly increasing the levels of glutathione, superoxide dismutase, catalase, and decreasing the levels of lipid peroxidase. The study shows that phospholipid-based phytosome is a promising and viable strategy for improving the delivery of apigenin and similar phytoconstituents with low aqueous solubility
Hormone deprivation alters mitochondrial function and lipid profile in the hippocampus
Mitochondrial dysfunction is a common hallmark in aging. In the female, reproductive senescence is characterized by loss of ovarian hormones, many of whose neuroprotective effects converge upon mitochondria. The functional integrity of mitochondria is dependent on membrane fatty acid and phospholipid composition, which are also affected during aging. The effect of long-term ovarian hormone deprivation upon mitochondrial function and its putative association with changes in mitochondrial membrane lipid profile in the hippocampus, an area primarily affected during aging and highly responsive to ovarian hormones, is unknown. To this aim, Wistar adult female rats were ovariectomized or sham-operated. Twelve weeks later, different parameters of mitochondrial function (O2 uptake, ATP production, membrane potential and respiratory complex activities) as well as membrane phospholipid content and composition were evaluated in hippocampal mitochondria. Chronic ovariectomy reduced mitochondrial O2 uptake and ATP production rates and induced membrane depolarization during active respiration without altering the activity of respiratory complexes. Mitochondrial membrane lipid profile showed no changes in cholesterol levels but higher levels of unsaturated fatty acids and a higher peroxidizability index in mitochondria from ovariectomized rats. Interestingly, ovariectomy also reduced cardiolipin content and altered cardiolipin fatty acid profile leading to a lower peroxidizability index. In conclusion, chronic ovarian hormone deprivation induces mitochondrial dysfunction and changes in the mitochondrial membrane lipid profile comparable to an aging phenotype. Our study provides insights into ovarian hormone loss-induced early lipidomic changes with bioenergetic deficits in the hippocampus that may contribute to the increased risk of Alzheimer’s disease and other age-associated disorders observed in postmenopause.Fil: Zarate, Sandra Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Astiz, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Magnani, Natalia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Imsen, Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Merino, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Alvarez, Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Reines, Analia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Seilicovich, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentin
Biomolecule surface patterning may enhance membrane association
Under dehydration conditions, amphipathic Late Embryogenesis Abundant (LEA)
proteins fold spontaneously from a random conformation into alpha-helical
structures and this transition is promoted by the presence of membranes. To
gain insight into the thermodynamics of membrane association we model the
resulting alpha-helical structures as infinite rigid cylinders patterned with
hydrophobic and hydrophilic stripes oriented parallel to their axis.
Statistical thermodynamic calculations using Single Chain Mean Field (SCMF)
theory show that the relative thickness of the stripes controls the free energy
of interaction of the alpha-helices with a phospholipid bilayer, as does the
bilayer structure and the depth of the equilibrium penetration of the cylinders
into the bilayer. The results may suggest the optimal thickness of the stripes
to mimic the association of such protein with membranes.Comment: Published in ACS Nano http://pubs.acs.org/doi/pdf/10.1021/nn204736
- …
