2,120 research outputs found

    Berry Phase and Topological Effects of Phonons

    Full text link
    Phonons as collective excitations of lattice vibrations are the main heat carriers in solids. Tremendous effort has been devoted to investigate phonons and related properties, giving rise to an intriguing field of phononics, which is of great importance to many practical applications, including heat dissipation, thermal barrier coating, thermoelectrics and thermal control devices. Meanwhile, the research of topology-related physics, awarded the 2016 Nobel Prize in Physics, has led to discoveries of various exotic quantum states of matter, including the quantum (anomalous/spin) Hall [Q(A/S)H] effects, topological insulators/semimetals and topological superconductors. An emerging research field is to bring topological concepts for a new paradigm phononics---"topological phononics". In this Perspective, we will briefly introduce this emerging field and discuss the use of novel quantum degrees of freedom like the Berry phase and topology for manipulating phonons in unprecedentedly new ways.Comment: Accepted by National Science Review (2017

    Phononic topological insulators with tunable pseudospin physics

    Full text link
    Efficient control of phonons is crucial to energy-information technology, but limited by the lacking of tunable degrees of freedom like charge or spin. Here we suggest to utilize crystalline symmetry-protected pseudospins as new quantum degrees of freedom to manipulate phonons. Remarkably, we reveal a duality between phonon pseudospins and electron spins by presenting Kramers-like degeneracy and pseudospin counterparts of spin-orbit coupling, which lays the foundation for "pseudospin phononics". Furthermore, we report two types of three-dimensional phononic topological insulators, which give topologically protected, gapless surface states with linear and quadratic band degeneracies, respectively. These topological surface states display unconventional phonon transport behaviors attributed to the unique pseudospin-momentum locking, which are useful for phononic circuits, transistors, antennas, etc. The emerging pseudospin physics offers new opportunities to develop future phononics

    Nonlinear phononics using atomically thin membranes

    Full text link
    Phononic crystals and acoustic meta-materials are used to tailor phonon and sound propagation properties by facilitating artificial, periodic structures. Analogous to photonic crystals, phononic band gaps can be created, which influence wave propagation and, more generally, allow engineering of the acoustic properties of a system. Beyond that, nonlinear phenomena in periodic structures have been extensively studied in photonic crystals and atomic Bose-Einstein Condensates in optical lattices. However, creating nonlinear phononic crystals or nonlinear acoustic meta-materials remains challenging and only few examples have been demonstrated. Here we show that atomically thin and periodically pinned membranes support coupled localized modes with nonlinear dynamics. The proposed system provides a platform for investigating nonlinear phononics

    Sum-frequency ionic Raman scattering

    Full text link
    In a recent report sum-frequency excitation of a Raman-active phonon was experimentally demonstrated for the first time. This mechanism is the sibling of impulsive stimulated Raman scattering, in which difference-frequency components of a light field excite a Raman-active mode. Here we propose that ionic Raman scattering analogously has a sum-frequency counterpart. We compare the four Raman mechanisms, photonic and ionic difference- and sum-frequency excitation, for three different example materials using a generalized oscillator model for which we calculate the parameters with density functional theory. Sum-frequency ionic Raman scattering completes the toolkit for controlling materials properties by means of selective excitation of lattice vibrations

    Valley filtering effect of phonons in graphene with a grain boundary

    Get PDF
    Due to their possibility to encode information and realize low-energy-consumption quantum devices, control and manipulation of the valley degree of freedom have been widely studied in electronic systems. In contrast, the phononic counterpart--valley phononics--has been largely unexplored, despite the importance in both fundamental science and practical applications. In this work, we demonstrate that the control of "valleys" is also applicable for phonons in graphene by using a grain boundary. In particular, perfect valley filtering effect is observed at certain energy windows for flexural modes and found to be closely related to the anisotropy of phonon valley pockets. Moreover, valley filtering may be further improved using Fano-like resonance. Our findings reveal the possibility of valley phononics, paving the road towards purposeful phonon engineering and future valley phononics.Comment: 20 pages, 5 figure

    Hydrogen bonds and asymmetrical heat diffusion in a-Helices. A Computational Analysis

    Full text link
    In this work, we report the heat rectifying capability of a-helices. Using molecular dynamics simulations we show an increased thermal diffusivity in the C-Terminal to N-Terminal direction of propagation. The origin of this effect seems to be a function of the particular orientation of the hydrogen bonds stabilizing these a-helices. Our results may be relevant for the design of thermal rectification devices for materials science and lend support to the role of normal length hydrogen bonds in the asymmetrical energy flow in proteins
    corecore