7,307 research outputs found

    A continuous model of ant foraging with pheromones and trail formation

    Full text link
    We propose and numerically analyze a PDE model of ant foraging behavior. Ant foraging is a prime example of individuals following simple behavioral rules based on local information producing complex, organized and ``intelligent'' strategies at the population level. One of its main aspects is the widespread use of pheromones, which are chemical compounds laid by the ants used to attract other ants to a food source. In this work, we consider a continuous description of a population of ants and simulate numerically the foraging behavior using a system of PDEs of chemotaxis type. We show that, numerically, this system accurately reproduces observed foraging behavior, such as trail formation and efficient removal of food sources.Comment: Conference proceeding

    Urban Swarms: A new approach for autonomous waste management

    Get PDF
    Modern cities are growing ecosystems that face new challenges due to the increasing population demands. One of the many problems they face nowadays is waste management, which has become a pressing issue requiring new solutions. Swarm robotics systems have been attracting an increasing amount of attention in the past years and they are expected to become one of the main driving factors for innovation in the field of robotics. The research presented in this paper explores the feasibility of a swarm robotics system in an urban environment. By using bio-inspired foraging methods such as multi-place foraging and stigmergy-based navigation, a swarm of robots is able to improve the efficiency and autonomy of the urban waste management system in a realistic scenario. To achieve this, a diverse set of simulation experiments was conducted using real-world GIS data and implementing different garbage collection scenarios driven by robot swarms. Results presented in this research show that the proposed system outperforms current approaches. Moreover, results not only show the efficiency of our solution, but also give insights about how to design and customize these systems.Comment: Manuscript accepted for publication in IEEE ICRA 201

    Physics of Transport and Traffic Phenomena in Biology: from molecular motors and cells to organisms

    Full text link
    Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experiments. Traffic-like movements of social insects like ants and termites on trails are, perhaps, more familiar in our everyday life. Experimental, theoretical and computational investigations in the last few years have led to a deeper understanding of the generic or common physical principles involved in these phenomena. In particular, some of the methods of non-equilibrium statistical mechanics, pioneered almost a hundred years ago by Einstein, Langevin and others, turned out to be powerful theoretical tools for quantitaive analysis of models of these traffic-like collective phenomena as these systems are intrinsically far from equilibrium. In this review we critically examine the current status of our understanding, expose the limitations of the existing methods, mention open challenging questions and speculate on the possible future directions of research in this interdisciplinary area where physics meets not only chemistry and biology but also (nano-)technology.Comment: 33 page Review article, REVTEX text, 29 EPS and PS figure

    Analysis of a chemotaxis system modeling ant foraging

    Full text link
    In this paper we analyze a system of PDEs recently introduced in [P. Amorim, {\it Modeling ant foraging: a {chemotaxis} approach with pheromones and trail formation}], in order to describe the dynamics of ant foraging. The system is made of convection-diffusion-reaction equations, and the coupling is driven by chemotaxis mechanisms. We establish the well-posedness for the model, and investigate the regularity issue for a large class of integrable data. Our main focus is on the (physically relevant) two-dimensional case with boundary conditions, where we prove that the solutions remain bounded for all times. The proof involves a series of fine \emph{a priori} estimates in Lebesgue spaces.Comment: 39 page

    Stigmergy in Web 2.0: a model for site dynamics

    Get PDF
    Building Web 2.0 sites does not necessarily ensure the success of the site. We aim to better understand what improves the success of a site by drawing insight from biologically inspired design patterns. Web 2.0 sites provide a mechanism for human interaction enabling powerful intercommunication between massive volumes of users. Early Web 2.0 site providers that were previously dominant are being succeeded by newer sites providing innovative social interaction mechanisms. Understanding what site traits contribute to this success drives research into Web sites mechanics using models to describe the associated social networking behaviour. Some of these models attempt to show how the volume of users provides a self-organising and self-contextualisation of content. One model describing coordinated environments is called stigmergy, a term originally describing coordinated insect behavior. This paper explores how exploiting stigmergy can provide a valuable mechanism for identifying and analysing online user behavior specifically when considering that user freedom of choice is restricted by the provided web site functionality. This will aid our building better collaborative Web sites improving the collaborative processes
    corecore