1,583 research outputs found

    MIMO Multiway Relaying with Pairwise Data Exchange: A Degrees of Freedom Perspective

    Full text link
    In this paper, we study achievable degrees of freedom (DoF) of a multiple-input multiple-output (MIMO) multiway relay channel (mRC) where KK users, each equipped with MM antennas, exchange messages in a pairwise manner via a common NN-antenna relay node. % A novel and systematic way of joint beamforming design at the users and at the relay is proposed to align signals for efficient implementation of physical-layer network coding (PNC). It is shown that, when the user number K=3K=3, the proposed beamforming design can achieve the DoF capacity of the considered mRC for any (M,N)(M,N) setups. % For the scenarios with K>3K>3, we show that the proposed signaling scheme can be improved by disabling a portion of relay antennas so as to align signals more efficiently. Our analysis reveals that the obtained achievable DoF is always piecewise linear, and is bounded either by the number of user antennas MM or by the number of relay antennas NN. Further, we show that the DoF capacity can be achieved for MN∈(0,Kβˆ’1K(Kβˆ’2)]\frac{M}{N} \in \left(0,\frac{K-1}{K(K-2)} \right] and MN∈[1K(Kβˆ’1)+12,∞)\frac{M}{N} \in \left[\frac{1}{K(K-1)}+\frac{1}{2},\infty \right), which provides a broader range of the DoF capacity than the existing results. Asymptotic DoF as Kβ†’βˆžK\rightarrow \infty is also derived based on the proposed signaling scheme.Comment: 13 pages, 7 figure

    Generalized Signal Alignment For MIMO Two-Way X Relay Channels

    Full text link
    We study the degrees of freedom (DoF) of MIMO two-way X relay channels. Previous work studied the case N<2MN < 2M, where NN and MM denote the number of antennas at the relay and each source, respectively, and showed that the maximum DoF of 2N2N is achievable when Nβ‰€βŒŠ8M5βŒ‹N \leq \lfloor\frac{8M}{5}\rfloor by applying signal alignment (SA) for network coding and interference cancelation. This work considers the case N>2MN>2M where the performance is limited by the number of antennas at each source node and conventional SA is not feasible. We propose a \textit{generalized signal alignment} (GSA) based transmission scheme. The key is to let the signals to be exchanged between every source node align in a transformed subspace, rather than the direct subspace, at the relay so as to form network-coded signals. This is realized by jointly designing the precoding matrices at all source nodes and the processing matrix at the relay. Moreover, the aligned subspaces are orthogonal to each other. By applying the GSA, we show that the DoF upper bound 4M4M is achievable when Mβ‰€βŒŠ2N5βŒ‹M \leq \lfloor\frac{2N}{5}\rfloor (MM is even) or Mβ‰€βŒŠ2Nβˆ’15βŒ‹M \leq \lfloor\frac{2N-1}{5}\rfloor (MM is odd). Numerical results also demonstrate that our proposed transmission scheme is feasible and effective.Comment: 6 pages, 6 figures, to appear in IEEE ICC 201

    Throughput sensitivity to antenna pattern and orientation in 802.11n networks

    Get PDF
    • …
    corecore