3 research outputs found

    Phase transitions of the Moran process and algorithmic consequences

    Get PDF
    The Moran process is a random process that models the spread of genetic mutations through graphs. On connected graphs, the process eventually reaches “fixation”, where all vertices are mutants, or “extinction”, where none are. Our main result is an almost-tight upper bound on expected absorption time. For all ε > 0, we show that the expected absorption time on an n-vertex graph is o(n3+ε). Specifically, it is at most n3eO((log log n)3), and there is a family of graphs where it is Ω(n3). In proving this, we establish a phase transition in the probability of fixation, depending on mutants’ fitness r. We show that no similar phase transition occurs for digraphs, where it is already known that the expected absorption time can be exponential. Finally, we give an improved FPRAS for approximating the probability of fixation. On degree-bounded graphs where some basic properties are given, its running time is independent of the number of vertices

    Fast and strong amplifiers of natural selection

    Get PDF
    Selection and random drift determine the probability that novel mutations fixate in a population. Population structure is known to affect the dynamics of the evolutionary process. Amplifiers of selection are population structures that increase the fixation probability of beneficial mutants compared to well-mixed populations. Over the past 15 years, extensive research has produced remarkable structures called strong amplifiers which guarantee that every beneficial mutation fixates with high probability. But strong amplification has come at the cost of considerably delaying the fixation event, which can slow down the overall rate of evolution. However, the precise relationship between fixation probability and time has remained elusive. Here we characterize the slowdown effect of strong amplification. First, we prove that all strong amplifiers must delay the fixation event at least to some extent. Second, we construct strong amplifiers that delay the fixation event only marginally as compared to the well-mixed populations. Our results thus establish a tight relationship between fixation probability and time: Strong amplification always comes at a cost of a slowdown, but more than a marginal slowdown is not needed

    IST Austria Thesis

    Get PDF
    In this thesis we study certain mathematical aspects of evolution. The two primary forces that drive an evolutionary process are mutation and selection. Mutation generates new variants in a population. Selection chooses among the variants depending on the reproductive rates of individuals. Evolutionary processes are intrinsically random – a new mutation that is initially present in the population at low frequency can go extinct, even if it confers a reproductive advantage. The overall rate of evolution is largely determined by two quantities: the probability that an invading advantageous mutation spreads through the population (called fixation probability) and the time until it does so (called fixation time). Both those quantities crucially depend not only on the strength of the invading mutation but also on the population structure. In this thesis, we aim to understand how the underlying population structure affects the overall rate of evolution. Specifically, we study population structures that increase the fixation probability of advantageous mutants (called amplifiers of selection). Broadly speaking, our results are of three different types: We present various strong amplifiers, we identify regimes under which only limited amplification is feasible, and we propose population structures that provide different tradeoffs between high fixation probability and short fixation time
    corecore