2,320 research outputs found

    Phase Retrieval via Matrix Completion

    Full text link
    This paper develops a novel framework for phase retrieval, a problem which arises in X-ray crystallography, diffraction imaging, astronomical imaging and many other applications. Our approach combines multiple structured illuminations together with ideas from convex programming to recover the phase from intensity measurements, typically from the modulus of the diffracted wave. We demonstrate empirically that any complex-valued object can be recovered from the knowledge of the magnitude of just a few diffracted patterns by solving a simple convex optimization problem inspired by the recent literature on matrix completion. More importantly, we also demonstrate that our noise-aware algorithms are stable in the sense that the reconstruction degrades gracefully as the signal-to-noise ratio decreases. Finally, we introduce some theory showing that one can design very simple structured illumination patterns such that three diffracted figures uniquely determine the phase of the object we wish to recover

    Multiple Illumination Phaseless Super-Resolution (MIPS) with Applications To Phaseless DOA Estimation and Diffraction Imaging

    Get PDF
    Phaseless super-resolution is the problem of recovering an unknown signal from measurements of the magnitudes of the low frequency Fourier transform of the signal. This problem arises in applications where measuring the phase, and making high-frequency measurements, are either too costly or altogether infeasible. The problem is especially challenging because it combines the difficult problems of phase retrieval and classical super-resolutionComment: To appear in ICASSP 201
    • …
    corecore