207,805 research outputs found
A phase-field model for cohesive fracture
In this paper, a phase-field model for cohesive fracture is developed. After casting the cohesive zone approach in an energetic framework, which is suitable for incorporation in phase-field approaches, the phase-field approach to brittle fracture is recapitulated. The approximation to the Dirac function is discussed with particular emphasis on the Dirichlet boundary conditions that arise in the phase-field approximation. The accuracy of the discretisation of the phase field, including the sensitivity to the parameter that balances the field and the boundary contributions, is assessed at the hand of a simple example. The relation to gradient-enhanced damage models is highlighted, and some comments on the similarities and the differences between phase-field approaches to fracture and gradient-damage models are made. A phase-field representation for cohesive fracture is elaborated, starting from the aforementioned energetic framework. The strong as well as the weak formats are presented, the latter being the starting point for the ensuing finite element discretisation, which involves three fields: the displacement field, an auxiliary field that represents the jump in the displacement across the crack, and the phase field. Compared to phase-field approaches for brittle fracture, the modelling of the jump of the displacement across the crack is a complication, and the current work provides evidence that an additional constraint has to be provided in the sense that the auxiliary field must be constant in the direction orthogonal to the crack. The sensitivity of the results with respect to the numerical parameter needed to enforce this constraint is investigated, as well as how the results depend on the orders of the discretisation of the three fields. Finally, examples are given that demonstrate grid insensitivity for adhesive and for cohesive failure, the latter example being somewhat limited because only straight crack propagation is considered
Phase field approximation of cohesive fracture models
We obtain a cohesive fracture model as a -limit of scalar damage
models in which the elastic coefficient is computed from the damage variable
through a function of the form , with diverging for close to the value describing undamaged
material. The resulting fracture energy can be determined by solving a
one-dimensional vectorial optimal profile problem. It is linear in the opening
at small values of and has a finite limit as . If the
function is allowed to depend on the index , for specific choices we
recover in the limit Dugdale's and Griffith's fracture models, and models with
surface energy density having a power-law growth at small openings
Phase-Field Model of Mode III Dynamic Fracture
We introduce a phenomenological continuum model for mode III dynamic fracture
that is based on the phase-field methodology used extensively to model
interfacial pattern formation. We couple a scalar field, which distinguishes
between ``broken'' and ``unbroken'' states of the system, to the displacement
field in a way that consistently includes both macroscopic elasticity and a
simple rotationally invariant short scale description of breaking. We report
two-dimensional simulations that yield steady-state crack motion in a strip
geometry above the Griffith threshold.Comment: submitted to PR
High-accuracy phase-field models for brittle fracture based on a new family of degradation functions
Phase-field approaches to fracture based on energy minimization principles
have been rapidly gaining popularity in recent years, and are particularly
well-suited for simulating crack initiation and growth in complex fracture
networks. In the phase-field framework, the surface energy associated with
crack formation is calculated by evaluating a functional defined in terms of a
scalar order parameter and its gradients, which in turn describe the fractures
in a diffuse sense following a prescribed regularization length scale. Imposing
stationarity of the total energy leads to a coupled system of partial
differential equations, one enforcing stress equilibrium and another governing
phase-field evolution. The two equations are coupled through an energy
degradation function that models the loss of stiffness in the bulk material as
it undergoes damage. In the present work, we introduce a new parametric family
of degradation functions aimed at increasing the accuracy of phase-field models
in predicting critical loads associated with crack nucleation as well as the
propagation of existing fractures. An additional goal is the preservation of
linear elastic response in the bulk material prior to fracture. Through the
analysis of several numerical examples, we demonstrate the superiority of the
proposed family of functions to the classical quadratic degradation function
that is used most often in the literature.Comment: 33 pages, 30 figure
A phase-field method for modeling cracks with frictional contact
We introduce a phase-field method for continuous modeling of cracks with
frictional contacts. Compared with standard discrete methods for frictional
contacts, the phase-field method has two attractive features: (1) it can
represent arbitrary crack geometry without an explicit function or basis
enrichment, and (2) it does not require an algorithm for imposing contact
constraints. The first feature, which is common in phase-field models of
fracture, is attained by regularizing a sharp interface geometry using a
surface density functional. The second feature, which is a unique advantage for
contact problems, is achieved by a new approach that calculates the stress
tensor in the regularized interface region depending on the contact condition
of the interface. Particularly, under a slip condition, this approach updates
stress components in the slip direction using a standard contact constitutive
law, while making other stress components compatible with stress in the bulk
region to ensure non-penetrating deformation in other directions. We verify the
proposed phase-field method using stationary interface problems simulated by
discrete methods in the literature. Subsequently, by allowing the phase field
to evolve according to brittle fracture theory, we demonstrate the proposed
method's capability for modeling crack growth with frictional contact
- …
