207,805 research outputs found

    A phase-field model for cohesive fracture

    Get PDF
    In this paper, a phase-field model for cohesive fracture is developed. After casting the cohesive zone approach in an energetic framework, which is suitable for incorporation in phase-field approaches, the phase-field approach to brittle fracture is recapitulated. The approximation to the Dirac function is discussed with particular emphasis on the Dirichlet boundary conditions that arise in the phase-field approximation. The accuracy of the discretisation of the phase field, including the sensitivity to the parameter that balances the field and the boundary contributions, is assessed at the hand of a simple example. The relation to gradient-enhanced damage models is highlighted, and some comments on the similarities and the differences between phase-field approaches to fracture and gradient-damage models are made. A phase-field representation for cohesive fracture is elaborated, starting from the aforementioned energetic framework. The strong as well as the weak formats are presented, the latter being the starting point for the ensuing finite element discretisation, which involves three fields: the displacement field, an auxiliary field that represents the jump in the displacement across the crack, and the phase field. Compared to phase-field approaches for brittle fracture, the modelling of the jump of the displacement across the crack is a complication, and the current work provides evidence that an additional constraint has to be provided in the sense that the auxiliary field must be constant in the direction orthogonal to the crack. The sensitivity of the results with respect to the numerical parameter needed to enforce this constraint is investigated, as well as how the results depend on the orders of the discretisation of the three fields. Finally, examples are given that demonstrate grid insensitivity for adhesive and for cohesive failure, the latter example being somewhat limited because only straight crack propagation is considered

    Phase field approximation of cohesive fracture models

    Full text link
    We obtain a cohesive fracture model as a Γ\Gamma-limit of scalar damage models in which the elastic coefficient is computed from the damage variable vv through a function fkf_k of the form fk(v)=min{1,εk1/2f(v)}f_k(v)=min\{1,\varepsilon_k^{1/2} f(v)\}, with ff diverging for vv close to the value describing undamaged material. The resulting fracture energy can be determined by solving a one-dimensional vectorial optimal profile problem. It is linear in the opening ss at small values of ss and has a finite limit as ss\to\infty. If the function ff is allowed to depend on the index kk, for specific choices we recover in the limit Dugdale's and Griffith's fracture models, and models with surface energy density having a power-law growth at small openings

    Phase-Field Model of Mode III Dynamic Fracture

    Full text link
    We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.Comment: submitted to PR

    High-accuracy phase-field models for brittle fracture based on a new family of degradation functions

    Get PDF
    Phase-field approaches to fracture based on energy minimization principles have been rapidly gaining popularity in recent years, and are particularly well-suited for simulating crack initiation and growth in complex fracture networks. In the phase-field framework, the surface energy associated with crack formation is calculated by evaluating a functional defined in terms of a scalar order parameter and its gradients, which in turn describe the fractures in a diffuse sense following a prescribed regularization length scale. Imposing stationarity of the total energy leads to a coupled system of partial differential equations, one enforcing stress equilibrium and another governing phase-field evolution. The two equations are coupled through an energy degradation function that models the loss of stiffness in the bulk material as it undergoes damage. In the present work, we introduce a new parametric family of degradation functions aimed at increasing the accuracy of phase-field models in predicting critical loads associated with crack nucleation as well as the propagation of existing fractures. An additional goal is the preservation of linear elastic response in the bulk material prior to fracture. Through the analysis of several numerical examples, we demonstrate the superiority of the proposed family of functions to the classical quadratic degradation function that is used most often in the literature.Comment: 33 pages, 30 figure

    A phase-field method for modeling cracks with frictional contact

    Full text link
    We introduce a phase-field method for continuous modeling of cracks with frictional contacts. Compared with standard discrete methods for frictional contacts, the phase-field method has two attractive features: (1) it can represent arbitrary crack geometry without an explicit function or basis enrichment, and (2) it does not require an algorithm for imposing contact constraints. The first feature, which is common in phase-field models of fracture, is attained by regularizing a sharp interface geometry using a surface density functional. The second feature, which is a unique advantage for contact problems, is achieved by a new approach that calculates the stress tensor in the regularized interface region depending on the contact condition of the interface. Particularly, under a slip condition, this approach updates stress components in the slip direction using a standard contact constitutive law, while making other stress components compatible with stress in the bulk region to ensure non-penetrating deformation in other directions. We verify the proposed phase-field method using stationary interface problems simulated by discrete methods in the literature. Subsequently, by allowing the phase field to evolve according to brittle fracture theory, we demonstrate the proposed method's capability for modeling crack growth with frictional contact
    corecore