2,447,883 research outputs found

    Phase change material in automated window shades

    Get PDF
    The purpose of this report is to detail the development process for a phase change material window shading system, which stores solar thermal energy and later releases it indoors to provide nighttime space heating. To do this, wax-filled louvers with thermally absorptive front faces were developed and outfitted with a control system, which utilized historical weather data to orient the louvers to specific solar azimuthal angles, thus maximizing the thermal absorption. The system was tested against other common window treatments in a pair of thermally comparable testing structures, and was found to provide energy savings as high as 50%

    A design handbook for phase change thermal control and energy storage devices

    Get PDF
    Comprehensive survey is given of the thermal aspects of phase change material devices. Fundamental mechanisms of heat transfer within the phase change device are discussed. Performance in zero-g and one-g fields are examined as it relates to such a device. Computer models for phase change materials, with metal fillers, undergoing conductive and convective processes are detailed. Using these models, extensive parametric data are presented for a hypothetical configuration with a rectangular phase change housing, using straight fins as the filler, and paraffin as the phase change material. These data are generated over a range of realistic sizes, material properties, and thermal boundary conditions. A number of illustrative examples are given to demonstrate use of the parametric data. Also, a complete listing of phase change material property data are reproduced herein as an aid to the reader

    Miniature Silicon Nanobeam Resonator Tuned by GST Phase Change Material

    Get PDF
    We report a silicon optical nanobeam resonator with central hole infiltrated with a thin layer of Ge2Sb2Te5 (GST) material. The resonances can be tuned when the GST changes its phases between the amorphous and crystalline states

    Phase-change materials handbook

    Get PDF
    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure

    Phase change composite bimorphs

    Full text link
    A bilayer composite thin-film beam structure is described. The structure incorporates a bulk phase change material as small inclusions in one layer of a bimorph. The structure, also referred to as a “phase change composite bimorph” or “PCBM”, curls abruptly, and reversibly, at a phase transition temperature. Large curling and effective expansion coefficients are demonstrated. The PCBMs may be employed in various self-assembly mechanisms and actuators.Published versio

    Phase-Change Control of Interlayer Exchange Coupling

    Full text link
    Changing the interlayer exchange coupling between magnetic layers in-situ is a key issue of spintronics, as it allows for the optimization of properties that are desirable for applications, including magnetic sensing and memory. In this paper, we utilize the phase change material VO2 as a spacer layer to regulate the interlayer exchange coupling between ferromagnetic layers with perpendicular magnetic anisotropy. The successful growth of ultra-thin (several nanometres) VO2 films is realized by sputtering at room temperature, which further enables the fabrication of [Pt/Co]2/VO2/[Co/Pt]2 multilayers with distinct interfaces. Such a magnetic multilayer exhibits an evolution from antiferromagnetic coupling to ferromagnetic coupling as the VO2 undergoes a phase change. The underlying mechanism originates from the change in the electronic structure of the spacer layer from an insulating to a metallic state. As a demonstration of phase change spintronics, this work may reveal the great potential of material innovations for next-generation spintronics
    corecore