257 research outputs found

    Optical Characteristics Analysis of Resonant Tunneling Diode Photodiode Based Oscillators

    Get PDF
    This paper represents the experimental results of optical modulation characteristics of a resonant tunneling diode-photodiode (RTD-PD) device and novel microwave oscillators employing such RTD-PD. Different from a pure electronic RTD oscillator, the RTD-PDs in this work contain photoconductive layers which make it able to operate in optical conditions. A beam of intensity modulated light with a wavelength of 1310 nm was sent to the free running oscillator via an optical fiber whilst the RTD device was biased in the oscillation condition, and the corresponding electrical data can be extracted from the output port of the oscillator. A square wave signal at data rates up to 10 Gbit/s, and a pseudo random binary sequence (PRBS) signal with a data rate of 100 Mbit/s were preliminarily implemented for modulation

    Resonant tunneling diode photodetectors for optical communications

    Get PDF
    Optical modulation characteristics of resonant tunneling diode photodetectors (RTD‐PD) are investigated. Intensity modulated light excites the RTD‐PDs to conduct data experiments. Simple and complex data patterns are used with results showing data rates up to 80 and 200 Mbit/s, respectively. This is the first demonstration of complex modulation using resonant tunneling diodes

    Resonant Tunnelling Optoelectronic Circuits

    Get PDF
    Nowadays, most communication networks such as local area networks (LANs), metropolitan area networks (MANs), and wide area networks (WANs) have replaced or are about to replace coaxial cable or twisted copper wire with fiber optical cables. Light-wave communication systems comprise a transmitter based on a visible or near-infrared light source, whose carrier is modulated by the information signal to be transmitted, a transmission media such as an optical fiber, eventually utilizing in-line optical amplification, and a receiver based on a photo-detector that recovers the information signal (Liu, 1996)(Einarsson, 1996). The transmitter consists of a driver circuit along a semiconductor laser or a light emitting diode (LED). The receiver is a signal processing circuit coupled to a photo-detector such as a photodiode, an avalanche photodiode (APD), a phototransistor or a high speed photoconductor that processes the photo-detected signal and recovers the primitive information signa

    Continuous wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability

    Get PDF
    We report on a photonic system for generation of high quality continuous-wave (CW) sub-THz signals. The system consists on a gain-switching-based optical frequency comb generator (GS-OFCG), a two-optical-modes selection mechanism and a n-i-pn-i-p superlattice photomixer. As mode selection mechanism, both selective tunable optical filtering using Fabry&-Pérot tunable filters (FPTFs) and Optical Injection Locking (OIL) are evaluated. The performance of the reported system surpasses in orders of magnitude the performance of any commercially available optical mm-wave and sub-THz generation system in a great number of parameters. It matches and even overcomes those of the best commercially available electronic THz generation systems. The performance parameters featured by our system are: linewidth <<10 Hz at 120 GHz, complete frequency range coverage (60&-140 GHz) with a resolution in the order of 0.1 Hz at 120 GHz ({hbox{10}} -12} of generated frequency), high long term frequency stability (5 Hz deviation over one hour). Most of these values are limited by the measurement instrumentation accuracy and resolution, thus the actual values of the system could be better than the reported ones. The frequency can be extended straightforwardly up to 1 THz extending the OFCG frequency span. This system is compact, robust, reliable, offers a very high performance, especially suited for sub-THz photonic local oscillators and high resolution spectroscopy.This work was supported by the Spanish Ministry of Science and Technology through the Project TEC2009-14525-C02-02. The work of Á. R. Criado has been supported by the Spanish Ministry of Science and Technology under the FPI Program, Grant BES2010-030290

    Photo-detectors integrated with resonant tunneling diodes

    Get PDF
    We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 ÎŒm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD’s NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.info:eu-repo/semantics/publishedVersio

    Photo-detectors integrated with resonant tunneling diodes

    Get PDF
    We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 m in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD's NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.FCT under the project WOWi [PTDC/EEA-TEL/100755/2008]; programme POCTI/FEDER [REEQ/1272/EEI/2005]; FCT Portugal [SFRH/BPD/84466/2012]info:eu-repo/semantics/publishedVersio

    Comparative efficiency and power assessment of optical photoconductive material-based terahertz sources for wireless communication systems

    Get PDF
    Electronic version of an article published as [Journal of Circuits, Systems and Computers, vol. 28, num. 1, 2018] [https://doi.org/10.1142/S0218126619500051] © [copyright World Scientific Publishing Company] [https://www.worldscientific.com/worldscinet/jcsc]Terahertz band has recently attracted the attention of the communication society due to its huge bandwidth and very high-speed wireless communications capability. It has been utilized in a variety of disciplines including physics, biology and astronomy for years; and the main concerns have always been obtaining highly efficient and high-power terahertz sources. Today, these problems are still the most important issues in establishing an operable wireless terahertz communication link. In this paper, recent studies in the field of terahertz source design are investigated based on the terahertz output power and efficiency. Solid-state sources and optical sources were comparatively reviewed with optical photoconductive material (OPM)-based methods which are combined with the terahertz antennas in the design phase generally. For wireless communication, the most suitable frequencies are between 0.3THz and 1THz due to the attenuation profile of the atmosphere. For this reason, based on the recently published studies, it has been observed that OPM and resonant tunneling diode-based sources are the most promising terahertz sources in terms of efficiency and power. Key issues and the main problems of terahertz photoconductive antennas which are the base of OPM method were also discussed in this paper.Peer ReviewedPostprint (author's final draft

    Submillimeter-wave InP Gunn devices

    Get PDF
    Recent advances in design and technology signifi- cantly improved the performance of low-noise InP Gunn devices in oscillators first at -band (110–170 GHz) and then at -band (75–110 GHz) frequencies. More importantly, they next resulted in orders of magnitude higher RF output power levels above -band and operation in a second harmonic mode up to at least 325 GHz. Examples of the state-of-the-art performance are continuous-wave RF power levels of more than 30 mW at 193 GHz, more than 3.5 mW at 300 GHz, and more than 2 mW at 315 GHz. The dc power requirements of these oscillators compare favorably with those of RF sources driving frequency multiplier chains to reach the same output RF power levels and frequencies. Two different types of doping profiles, a graded profile and one with a doping notch at the cathode, are prime candidates for operation at submillimeter- wave frequencies. Generation of significant RF power levels from InP Gunn devices with these optimized doping profiles is predicted up to at least 500 GHz and the performance predictions for the two different types of doping profiles are compared

    The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    Get PDF
    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques

    High performance terahertz resonant tunnelling diode sources and broadband antenna for air-side radiation

    Get PDF
    Resonant tunnelling diode (RTD) is known to be the fastest electronics device that can be fabricated in compact form and operate at room temperature with potential oscillation frequency up to 2.5 THz. The RTD device consists of a narrow band gap quantum well layer sandwiched between two thin wide band gap barriers layers. It exhibits negative differential resistance (NDR) region in its current-voltage (I-V) characteristics which is utilised in making oscillators. Up to date, the main challenge is producing high output power at high frequencies in particular. Although oscillation frequencies of ~ 2 THz have been already reported, the output power is in the range of micro-Watts. This thesis describes the systematic work on the design, fabrication, and characterisation of RTD-based oscillators in microwave/millimetre-wave monolithic integrated circuits (MMIC) form that can produce high output power and high oscillation frequency at the same time. Different MMIC RTD oscillator topologies were designed, fabricated, and characterised in this project which include: single RTD oscillator which employs one RTD device, double RTDs oscillator which employs two RTD devices connected in parallel, and coupled RTD oscillators which combine the powers of two oscillators over a single load, based on mutual coupling and which can employ up to four RTD devices. All oscillators employed relatively large size RTD devices for high power operation. The main challenge was to realise high oscillation frequency (~ 300 GHz) in MMIC form with the employed large sized RTD devices. To achieve this aim, proper designs of passive structures that can provide small values of resonating inductances were essential. These resonating inductance structures included shorted coplanar wave guide (CPW) and shorted microstrip transmission lines of low characteristics impedances Zo. Shorted transmission line of lower Zo has lower inductance per unit length. Thus, the geometrical dimensions would be relatively large and facilitate fabrication by low cost photolithography. A series of oscillators with oscillation frequencies in the J-band (220 – 325 GHz) range and output powers from 0.2 – 1.1 mW have been achieved in this project, and all were fabricated using photolithography. Theoretical estimation showed that higher oscillation frequencies (> 1 THz) can be achieved with the proposed MMIC RTD oscillators design in this project using photolithography with expected high power operation. Besides MMIC RTD oscillators, reported planar antennas for RTD-based oscillators were critically reviewed and the main challenges in designing high performance integrated antennas on large dielectric constant substrates are discussed in this thesis. A novel antenna was designed, simulated, fabricated, and characterised in this project. It was a bow-tie antenna with a tuning stub that has very wide bandwidth across the J-band. The antenna was diced and mounted on a reflector ground plane to alleviate the effect of the large dielectric constant substrate (InP) and radiates upwards to the air-side direction. The antenna was also investigated for integration with the all types of oscillators realised in this project. One port and two port antennas were designed, simulated, fabricated, and characterised and showed the suitability of integration with the single/double oscillator layout and the coupled oscillator layout, respectively
    • 

    corecore