1,828 research outputs found

    A Traffic Model for Machine-Type Communications Using Spatial Point Processes

    Get PDF
    A source traffic model for machine-to-machine communications is presented in this paper. We consider a model in which devices operate in a regular mode until they are triggered into an alarm mode by an alarm event. The positions of devices and events are modeled by means of Poisson point processes, where the generated traffic by a given device depends on its position and event positions. We first consider the case where devices and events are static and devices generate traffic according to a Bernoulli process, where we derive the total rate from the devices at the base station. We then extend the model by defining a two-state Markov chain for each device, which allows for devices to stay in alarm mode for a geometrically distributed holding time. The temporal characteristics of this model are analyzed via the autocovariance function, where the effect of event density and mean holding time are shown.Comment: Accepted at the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) - Workshop WS-07 on "The Internet of Things (IoT), the Road Ahead: Applications, Challenges, and Solutions

    Vehicle-based modelling of traffic . Theory and application to environmental impact modelling

    Get PDF
    This dissertation addresses vehicle-based approaches to traffic flow modelling. Having regard to the inherent dynamic nature of traffic, the investigations are mainly focused on the question, how this is captured by different model classes. In the first part, the dynamics of a microscopic car-following model (SKM), presented in, is studied by means of computer simulations and analytical calculations. A classification of the model's behaviour is given with respect to the stability of high-flow states and the outflow from jam. The effects of anticipatory driving on the model's dynamics is explored, yielding results valid in general for this model class. In the second part, a new approach is introduced based on queueing theory. It can be regarded as a microscopic implementation of a state-dependent queueing model, using coupled queues where the service rates additionally depend on the conditions downstream. The concept is shown to reproduce the dynamics of free flow and wide-moving jams. This is demonstrated by comparison with the SKM and real world measurements. An analytical treatment is given as well. The phenomena of boundary induced phase transitions is further addressed, giving the complete phase diagrams of both models. Finally, the application of the queueing approach within simulation-based traffic assignment is demonstrated in regard to environmental impact modelling

    The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity

    Get PDF
    Due to the complexity of the traffic flow dynamics in urban road networks, most quantitative descriptions of city traffic so far are based on computer simulations. This contribution pursues a macroscopic (fluid-dynamic) simulation approach, which facilitates a simple simulation of congestion spreading in cities. First, we show that a quantization of the macroscopic turning flows into units of single vehicles is necessary to obtain realistic fluctuations in the traffic variables, and how this can be implemented in a fluid-dynamic model. Then, we propose a new method to simulate destination flows without the requirement of individual route assignments. Combining both methods allows us to study a variety of different simulation scenarios. These reveal fundamental relationships between the average flow, the average density, and the variability of the vehicle densities. Considering the inhomogeneity of traffic as an independent variable can eliminate the scattering of congested flow measurements. The variability also turns out to be a key variable of urban traffic performance. Our results can be explained through the number of full links of the road network, and approximated by a simple analytical formula

    Disordered cellular automaton traffic flow model: Phase separated state, density waves and self organized criticality

    Full text link
    We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pp, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers p→0p\to 0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pp and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.Comment: 23 pages, 14 figure
    • …
    corecore