246,339 research outputs found
Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy
The unifying approach to early-time and late-time universe based on phantom
cosmology is proposed. We consider gravity-scalar system which contains usual
potential and scalar coupling function in front of kinetic term. As a result,
the possibility of phantom-non-phantom transition appears in such a way that
universe could have effectively phantom equation of state at early time as well
as at late time. In fact, the oscillating universe may have several phantom and
non-phantom phases. As a second model we suggest generalized holographic dark
energy where infrared cutoff is identified with combination of FRW parameters:
Hubble constant, particle and future horizons, cosmological constant and
universe life-time (if finite). Depending on the specific choice of the model
the number of interesting effects occur: the possibility to solve the
coincidence problem, crossing of phantom divide and unification of early-time
inflationary and late-time accelerating phantom universe. The bound for
holographic entropy which decreases in phantom era is also discussed.Comment: 13 pages, clarifications/refs added, to match with published versio
Phantom Black Holes and Sigma Models
We construct static multicenter solutions of phantom Einstein-Maxwell-dilaton
theory from null geodesics of the target space, leading to regular black holes
without spatial symmetry for certain discrete values of the dilaton coupling
constant. We also discuss the three-dimensional gravitating sigma models
obtained by reduction of phantom Einstein-Maxwell, phantom Kaluza-Klein and
phantom Einstein-Maxwell-dilaton-axion theories. In each case, we generate by
group transformations phantom charged black hole solutions from a neutral seed.Comment: 19 page
Phantom Accretion onto the Schwarzschild de-Sitter Black Hole
We deal with phantom energy accretion onto the Schwarzschild de-Sitter black
hole. The energy flux conservation, relativistic Bernoulli equation and mass
flux conservation equation are formulated to discuss the phantom accretion. We
discuss the conditions for critical accretion. It is found that mass of the
black hole decreases due to phantom accretion. There exist two critical points
which lie in the exterior of horizons (black hole and cosmological horizons).
The results for the phantom energy accretion onto the Schwarzschild black hole
can be recovered by taking .Comment: 9 pages, no figur
Transition between phantom and non-phantom phases with time dependent cosmological constant and Cardy-Verlinde formula
We investigate the transition phenomenon of the universe between a phantom
and a non-phantom phases. Particular attention is devoted to the case in which
the cosmological constant depends on time and is proportional to the square of
the Hubble parameter. Inhomogeneous equations of state are used and the
equation of motion is solved. We find that, depending on the choice of the
input parameters, the universe can transit from the non-phantom to the phantom
phase leading to the appearance of singularities. In particular, we find that
the phantom universe ends in the singularity of type III, unlike the case
without variable cosmological constant in which the phantom phase ends
exclusively in the big rip (singularity of type I). The Cardy-Verlinde formula
is also introduced for inhomogeneous equation of state and we find that its
equivalence with the total entropy of the universe, coming from the Friedmann
equations, occurs only for special choice of the input parameter at the
present time.Comment: 12 pages, 2 figure
Phantom energy from graded algebras
We construct a model of phantom energy using the graded Lie algebra SU(2/1).
The negative kinetic energy of the phantom field emerges naturally from the
graded Lie algebra, resulting in an equation of state with w<-1. The model also
contains ordinary scalar fields and anti-commuting (Grassmann) vector fields
which can be taken as two component dark matter. A potential term is generated
for both the phantom fields and the ordinary scalar fields via a postulated
condensate of the Grassmann vector fields. Since the phantom energy and dark
matter arise from the same Lagrangian the phantom energy and dark matter of
this model are coupled via the Grassman vector fields. In the model presented
here phantom energy and dark matter come from a gauge principle rather than
being introduced in an ad hoc manner.Comment: 8 pages no figures; references added and discussion on condensate of
vector grassman fields added. To be published MPL
Primordial Black Holes in Phantom Cosmology
We investigate the effects of accretion of phantom energy onto primordial
black holes. Since Hawking radiation and phantom energy accretion contribute to
a {\it decrease} of the mass of the black hole, the primordial black hole that
would be expected to decay now due to the Hawking process would decay {\it
earlier} due to the inclusion of the phantom energy. Equivalently, to have the
primordial black hole decay now it would have to be more massive initially. We
find that the effect of the phantom energy is substantial and the black holes
decaying now would be {\it much} more massive -- over 10 orders of magnitude!
This effect will be relevant for determining the time of production and hence
the number of evaporating black holes expected in a universe accelerating due
to phantom energy.Comment: 17 pages, 10 figures, accepted for publication in Gen. Relativ.
Gravi
- …
