2 research outputs found

    Perturbation theory approach to study the latent space degeneracy of Variational Autoencoders

    Full text link
    The use of Variational Autoencoders in different Machine Learning tasks has drastically increased in the last years. They have been developed as denoising, clustering and generative tools, highlighting a large potential in a wide range of fields. Their embeddings are able to extract relevant information from highly dimensional inputs, but the converged models can differ significantly and lead to degeneracy on the latent space. We leverage the relation between theoretical physics and machine learning to explain this behaviour, and introduce a new approach to correct for degeneration by using perturbation theory. The re-formulation of the embedding as multi-dimensional generative distribution, allows mapping to a new set of functions and their corresponding energy spectrum. We optimise for a perturbed Hamiltonian, with an additional energy potential that is related to the unobserved topology of the data. Our results show the potential of a new theoretical approach that can be used to interpret the latent space and generative nature of unsupervised learning, while the energy landscapes defined by the perturbations can be further used for modelling and dynamical purposes

    Max-Affine Spline Insights into Deep Generative Networks

    Full text link
    We connect a large class of Generative Deep Networks (GDNs) with spline operators in order to derive their properties, limitations, and new opportunities. By characterizing the latent space partition, dimension and angularity of the generated manifold, we relate the manifold dimension and approximation error to the sample size. The manifold-per-region affine subspace defines a local coordinate basis; we provide necessary and sufficient conditions relating those basis vectors with disentanglement. We also derive the output probability density mapped onto the generated manifold in terms of the latent space density, which enables the computation of key statistics such as its Shannon entropy. This finding also enables the computation of the GDN likelihood, which provides a new mechanism for model comparison as well as providing a quality measure for (generated) samples under the learned distribution. We demonstrate how low entropy and/or multimodal distributions are not naturally modeled by DGNs and are a cause of training instabilities
    corecore