463 research outputs found

    Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks

    Full text link
    Session-based recommendations are highly relevant in many modern on-line services (e.g. e-commerce, video streaming) and recommendation settings. Recently, Recurrent Neural Networks have been shown to perform very well in session-based settings. While in many session-based recommendation domains user identifiers are hard to come by, there are also domains in which user profiles are readily available. We propose a seamless way to personalize RNN models with cross-session information transfer and devise a Hierarchical RNN model that relays end evolves latent hidden states of the RNNs across user sessions. Results on two industry datasets show large improvements over the session-only RNNs

    Modelling Sequential Music Track Skips using a Multi-RNN Approach

    Get PDF
    Modelling sequential music skips provides streaming companies the ability to better understand the needs of the user base, resulting in a better user experience by reducing the need to manually skip certain music tracks. This paper describes the solution of the University of Copenhagen DIKU-IR team in the 'Spotify Sequential Skip Prediction Challenge', where the task was to predict the skip behaviour of the second half in a music listening session conditioned on the first half. We model this task using a Multi-RNN approach consisting of two distinct stacked recurrent neural networks, where one network focuses on encoding the first half of the session and the other network focuses on utilizing the encoding to make sequential skip predictions. The encoder network is initialized by a learned session-wide music encoding, and both of them utilize a learned track embedding. Our final model consists of a majority voted ensemble of individually trained models, and ranked 2nd out of 45 participating teams in the competition with a mean average accuracy of 0.641 and an accuracy on the first skip prediction of 0.807. Our code is released at https://github.com/Varyn/WSDM-challenge-2019-spotify.Comment: 4 page

    News Session-Based Recommendations using Deep Neural Networks

    Full text link
    News recommender systems are aimed to personalize users experiences and help them to discover relevant articles from a large and dynamic search space. Therefore, news domain is a challenging scenario for recommendations, due to its sparse user profiling, fast growing number of items, accelerated item's value decay, and users preferences dynamic shift. Some promising results have been recently achieved by the usage of Deep Learning techniques on Recommender Systems, specially for item's feature extraction and for session-based recommendations with Recurrent Neural Networks. In this paper, it is proposed an instantiation of the CHAMELEON -- a Deep Learning Meta-Architecture for News Recommender Systems. This architecture is composed of two modules, the first responsible to learn news articles representations, based on their text and metadata, and the second module aimed to provide session-based recommendations using Recurrent Neural Networks. The recommendation task addressed in this work is next-item prediction for users sessions: "what is the next most likely article a user might read in a session?" Users sessions context is leveraged by the architecture to provide additional information in such extreme cold-start scenario of news recommendation. Users' behavior and item features are both merged in an hybrid recommendation approach. A temporal offline evaluation method is also proposed as a complementary contribution, for a more realistic evaluation of such task, considering dynamic factors that affect global readership interests like popularity, recency, and seasonality. Experiments with an extensive number of session-based recommendation methods were performed and the proposed instantiation of CHAMELEON meta-architecture obtained a significant relative improvement in top-n accuracy and ranking metrics (10% on Hit Rate and 13% on MRR) over the best benchmark methods.Comment: Accepted for the Third Workshop on Deep Learning for Recommender Systems - DLRS 2018, October 02-07, 2018, Vancouver, Canada. https://recsys.acm.org/recsys18/dlrs
    corecore