1,175 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    NAIS: Neural Attentive Item Similarity Model for Recommendation

    Full text link
    Item-to-item collaborative filtering (aka. item-based CF) has been long used for building recommender systems in industrial settings, owing to its interpretability and efficiency in real-time personalization. It builds a user's profile as her historically interacted items, recommending new items that are similar to the user's profile. As such, the key to an item-based CF method is in the estimation of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM), our NAIS has stronger representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based CF, opening up new research possibilities for future developments of neural recommender systems

    TO EXPLAIN OR NOT TO EXPLAIN: AN EMPIRICAL INVESTIGATION OF AI-BASED RECOMMENDATIONS ON SOCIAL MEDIA PLATFORMS

    Get PDF
    AI-based social media recommendations have a great potential to improve user experience. However, often these recommendations do not match the user interest and create an unpleasant experience for the users. Moreover, the recommendation system being blackbox creates comprehensibility and transparency issues. This paper investigates social media recommendations from an end-user perspective. For the investigation, we used the popular social media platform Facebook and recruited regular users to conduct a qualitative analysis. We asked participants about the social media content suggestions, their comprehensibility, and explainability. Our analysis shows users mostly require explanation whenever they encounter unfamiliar content and to ensure their online data security. Furthermore, the users require concise, non-technical explanations along with the facility of controlled information flow. In addition, we observed that explanations impact the user’s perception of transparency, trust, and understandability. Finally, we have outlined some design implications and presented a synthesized framework based on our data analysis

    GPT as a Baseline for Recommendation Explanation Texts

    Full text link
    In this work, we establish a baseline potential for how modern model-generated text explanations of movie recommendations may help users, and explore what different components of these text explanations that users like or dislike, especially in contrast to existing human movie reviews. We found that participants gave no significantly different rankings between movies, nor did they give significantly different individual quality scores to reviews of movies that they had never seen before. However, participants did mark reviews as significantly better when they were movies they had seen before. We also explore specific aspects of movie review texts that participants marked as important for each quality. Overall, we establish that modern LLMs are a promising source of recommendation explanations, and we intend on further exploring personalizable text explanations in the future.Comment: 8 pages, 4 tables/figures. Accepted in current form to IntRS@RecSys2023 workshop. Intending on making noticeable in-place revisions on ArXiv for future submission, including potential title chang

    Explainability in Music Recommender Systems

    Full text link
    The most common way to listen to recorded music nowadays is via streaming platforms which provide access to tens of millions of tracks. To assist users in effectively browsing these large catalogs, the integration of Music Recommender Systems (MRSs) has become essential. Current real-world MRSs are often quite complex and optimized for recommendation accuracy. They combine several building blocks based on collaborative filtering and content-based recommendation. This complexity can hinder the ability to explain recommendations to end users, which is particularly important for recommendations perceived as unexpected or inappropriate. While pure recommendation performance often correlates with user satisfaction, explainability has a positive impact on other factors such as trust and forgiveness, which are ultimately essential to maintain user loyalty. In this article, we discuss how explainability can be addressed in the context of MRSs. We provide perspectives on how explainability could improve music recommendation algorithms and enhance user experience. First, we review common dimensions and goals of recommenders' explainability and in general of eXplainable Artificial Intelligence (XAI), and elaborate on the extent to which these apply -- or need to be adapted -- to the specific characteristics of music consumption and recommendation. Then, we show how explainability components can be integrated within a MRS and in what form explanations can be provided. Since the evaluation of explanation quality is decoupled from pure accuracy-based evaluation criteria, we also discuss requirements and strategies for evaluating explanations of music recommendations. Finally, we describe the current challenges for introducing explainability within a large-scale industrial music recommender system and provide research perspectives.Comment: To appear in AI Magazine, Special Topic on Recommender Systems 202

    An explainable sequence-based deep learning predictor with applications to song recommendation and text classification.

    Get PDF
    Streaming applications are now the predominant tools for listening to music. What makes the success of such software is the availability of songs and especially their ability to provide users with relevant personalized recommendations. State of the art music recommender systems mainly rely on either Matrix factorization-based collaborative filtering approaches or deep learning architectures. Deep learning models usually use metadata for content-based filtering or predict the next user interaction (listening to a song) using a memory-based deep learning structure that learns from temporal sequences of user actions. Despite advances in deep learning models for song recommendation systems, none has taken advantage of the sequential nature of songs by learning sequence models that are based on content. Aside from the importance of prediction accuracy in recommendation systems, recent research has unveiled the importance of other significant aspects such as explainability and solving the cold start problem where a new user or item with no prior history of interactions joins an online platform. In this work, we propose a hybrid deep learning structure, called “SeER”, that uses collaborative filtering and deep sequence models on the MIDI content of songs for recommendation. Our approach aims to take advantage of the superior capabilities of re-current neural networks, the multidimensional time series aspect of songs, and the power of matrix factorization to: •provide more accurate personalized recommendations, •solve the item cold start problem which is in the case of where a new unrated song is added to the set of choices to recommend; and •generate a relevant explanation for a song recommendation using a novel explainability process we named “Segment Forward Propagation Explainability”. Our evaluation experiments show promising results compared to state of the art baseline and hybrid song recommender systems in terms of ranking evaluation. In addition, we demonstrate how our explanation mechanism can be used with generic sequential data beyond music, namely unstructured free text in two application domains: sentiment classification of online user reviews and delineating potential child abuse instances from medical examination reports
    corecore