7,894 research outputs found

    Pose-based Deep Gait Recognition

    Full text link
    Human gait or walking manner is a biometric feature that allows identification of a person when other biometric features such as the face or iris are not visible. In this paper, we present a new pose-based convolutional neural network model for gait recognition. Unlike many methods that consider the full-height silhouette of a moving person, we consider the motion of points in the areas around human joints. To extract motion information, we estimate the optical flow between consecutive frames. We propose a deep convolutional model that computes pose-based gait descriptors. We compare different network architectures and aggregation methods and experimentally assess various sets of body parts to determine which are the most important for gait recognition. In addition, we investigate the generalization ability of the developed algorithms by transferring them between datasets. The results of these experiments show that our approach outperforms state-of-the-art methods

    Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning

    Full text link
    Cross-domain visual data matching is one of the fundamental problems in many real-world vision tasks, e.g., matching persons across ID photos and surveillance videos. Conventional approaches to this problem usually involves two steps: i) projecting samples from different domains into a common space, and ii) computing (dis-)similarity in this space based on a certain distance. In this paper, we present a novel pairwise similarity measure that advances existing models by i) expanding traditional linear projections into affine transformations and ii) fusing affine Mahalanobis distance and Cosine similarity by a data-driven combination. Moreover, we unify our similarity measure with feature representation learning via deep convolutional neural networks. Specifically, we incorporate the similarity measure matrix into the deep architecture, enabling an end-to-end way of model optimization. We extensively evaluate our generalized similarity model in several challenging cross-domain matching tasks: person re-identification under different views and face verification over different modalities (i.e., faces from still images and videos, older and younger faces, and sketch and photo portraits). The experimental results demonstrate superior performance of our model over other state-of-the-art methods.Comment: To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 201

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Sparsifying Neural Network Connections for Face Recognition

    Full text link
    This paper proposes to learn high-performance deep ConvNets with sparse neural connections, referred to as sparse ConvNets, for face recognition. The sparse ConvNets are learned in an iterative way, each time one additional layer is sparsified and the entire model is re-trained given the initial weights learned in previous iterations. One important finding is that directly training the sparse ConvNet from scratch failed to find good solutions for face recognition, while using a previously learned denser model to properly initialize a sparser model is critical to continue learning effective features for face recognition. This paper also proposes a new neural correlation-based weight selection criterion and empirically verifies its effectiveness in selecting informative connections from previously learned models in each iteration. When taking a moderately sparse structure (26%-76% of weights in the dense model), the proposed sparse ConvNet model significantly improves the face recognition performance of the previous state-of-the-art DeepID2+ models given the same training data, while it keeps the performance of the baseline model with only 12% of the original parameters

    Relevance Subject Machine: A Novel Person Re-identification Framework

    Full text link
    We propose a novel method called the Relevance Subject Machine (RSM) to solve the person re-identification (re-id) problem. RSM falls under the category of Bayesian sparse recovery algorithms and uses the sparse representation of the input video under a pre-defined dictionary to identify the subject in the video. Our approach focuses on the multi-shot re-id problem, which is the prevalent problem in many video analytics applications. RSM captures the essence of the multi-shot re-id problem by constraining the support of the sparse codes for each input video frame to be the same. Our proposed approach is also robust enough to deal with time varying outliers and occlusions by introducing a sparse, non-stationary noise term in the model error. We provide a novel Variational Bayesian based inference procedure along with an intuitive interpretation of the proposed update rules. We evaluate our approach over several commonly used re-id datasets and show superior performance over current state-of-the-art algorithms. Specifically, for ILIDS-VID, a recent large scale re-id dataset, RSM shows significant improvement over all published approaches, achieving an 11.5% (absolute) improvement in rank 1 accuracy over the closest competing algorithm considered.Comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Transfer Adaptation Learning: A Decade Survey

    Full text link
    The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as transfer adaptation learning (TAL) when it needs knowledge correspondence between different moments/domains. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. TAL aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance, which is presenting a blowout publication trend. This paper surveys the advances of TAL methodologies in the past decade, and the technical challenges and essential problems of TAL have been observed and discussed with deep insights and new perspectives. Broader solutions of transfer adaptation learning being created by researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey helps researchers rapidly but comprehensively understand and identify the research foundation, research status, theoretical limitations, future challenges and under-studied issues (universality, interpretability, and credibility) to be broken in the field toward universal representation and safe applications in open-world scenarios.Comment: 26 pages, 4 figure

    Face Recognition: From Traditional to Deep Learning Methods

    Full text link
    Starting in the seventies, face recognition has become one of the most researched topics in computer vision and biometrics. Traditional methods based on hand-crafted features and traditional machine learning techniques have recently been superseded by deep neural networks trained with very large datasets. In this paper we provide a comprehensive and up-to-date literature review of popular face recognition methods including both traditional (geometry-based, holistic, feature-based and hybrid methods) and deep learning methods

    Exploring Uncertainty in Conditional Multi-Modal Retrieval Systems

    Full text link
    We cast visual retrieval as a regression problem by posing triplet loss as a regression loss. This enables epistemic uncertainty estimation using dropout as a Bayesian approximation framework in retrieval. Accordingly, Monte Carlo (MC) sampling is leveraged to boost retrieval performance. Our approach is evaluated on two applications: person re-identification and autonomous car driving. Comparable state-of-the-art results are achieved on multiple datasets for the former application. We leverage the Honda driving dataset (HDD) for autonomous car driving application. It provides multiple modalities and similarity notions for ego-motion action understanding. Hence, we present a multi-modal conditional retrieval network. It disentangles embeddings into separate representations to encode different similarities. This form of joint learning eliminates the need to train multiple independent networks without any performance degradation. Quantitative evaluation highlights our approach competence, achieving 6% improvement in a highly uncertain environment

    Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition

    Full text link
    We propose a new deep network structure for unconstrained face recognition. The proposed network integrates several key components together in order to characterize complex data distributions, such as in unconstrained face images. Inspired by recent progress in deep networks, we consider some important concepts, including multi-scale feature learning, dense connections of network layers, and weighting different network flows, for building our deep network structure. The developed network is evaluated in unconstrained face matching, showing the capability of learning complex data distributions caused by face images with various qualities.Comment: 12 page
    • …
    corecore