4 research outputs found

    Persisting RB-tree into NVM in a consistency perspective

    No full text
    Byte-addressable non-volatile memory (NVM) is going to reshape conventional computer systems. With advantages of low latency, byte-addressability, and non-volatility, NVM can be directly put on the memory bus to replace DRAM. As a result, both system and application softwares have to be adjusted to perceive the fact that the persistent layer moves up to the memory. However, most of the current in-memory data structures will be problematic with consistency issues if not well tuned with NVM. This article places emphasis on an important in-memory structure that is widely used in computer systems, i.e., the Red/Black-tree (RB-tree). Since it has a long and complicated update process, the RB-tree is prone to inconsistency problems with NVM. This article presents an NVM-compatible consistent RB-tree with a new technique named cascade-versioning. The proposed RB-tree (i) is all-time consistent and scalable and (ii) needs no recovery procedure after system crashes. Experiment results show that the RB-tree for NVM not only achieves the aim of consistency with insignificant spatial overhead but also yields comparable performance to an ordinary volatile RB-tree

    Bit-Flip Aware Data Structures for Phase Change Memory

    Get PDF
    Big, non-volatile, byte-addressable, low-cost, and fast non-volatile memories like Phase Change Memory are appearing in the marketplace. They have the capability to unify both memory and storage and allow us to rethink the present memory hierarchy. An important draw-back to Phase Change Memory is limited write-endurance. In addition, Phase Change Memory shares with other Non-Volatile Random Access Memories an asym- metry in the energy costs of writes and reads. Best use of Non-Volatile Random Access Memories limits the number of times a Non-Volatile Random Access Memory cell changes contents, called a bit-flip. While the future of main memory is still unknown, we should already start to create data structures for them in order to shape the future era. This thesis investigates the creation of bit-flip aware data structures.The thesis first considers general ways in which a data structure can save bit- flips by smart overwrites and by using the exclusive-or of pointers. It then shows how a simple content dependent encoding can reduce bit-flips for web corpora. It then shows how to build hash based dictionary structures for Linear Hashing and Spiral Storage. Finally, the thesis presents Gray counters, close to bit-flip optimal counters that even enable age- based wear leveling with counters managed by the Non-Volatile Random Access Memories themselves instead of by the Operating Systems
    corecore