9,773 research outputs found

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    Brain rhythms of pain

    Get PDF
    Pain is an integrative phenomenon that results from dynamic interactions between sensory and contextual (i.e., cognitive, emotional, and motivational) processes. In the brain the experience of pain is associated with neuronal oscillations and synchrony at different frequencies. However, an overarching framework for the significance of oscillations for pain remains lacking. Recent concepts relate oscillations at different frequencies to the routing of information flow in the brain and the signaling of predictions and prediction errors. The application of these concepts to pain promises insights into how flexible routing of information flow coordinates diverse processes that merge into the experience of pain. Such insights might have implications for the understanding and treatment of chronic pain

    New structure in cell puncture activities by aphid stylets: a dual-mode EPG study

    Get PDF
    Intracellular punctures by aphid stylets appear as potential drop (pd) waveforms in DC electrical penetration graph (EPG) recordings. We used a dual-EPG device that recorded in one channel the ‘full EPG’ with R-plus emf-components (i.e., the usual DC EPG) and concurrently in a second channel the ‘R-EPG’ with R-components only. The circuit of the latter channel was an optimised amplitude modulation (AM) version derived from early (before 1990) AC systems. We also made some ‘emf-EPG’ recordings using a separate high input resistance ‘emf-amplifier’ sensitive to emf-components only. The intracellular pd waveforms have previously been divided into three subphases, and we aimed to distinguish and separate these subphases more accurately by the dual-EPG recordings than with the normal full EPG only. In this study, we temporarily distinguished five subphases (a–e), but unequivocal distinction of only a few of these appeared possible, in spite of the information coming from the two signals. The lack of clearly separable features in R-EPG signals often provided serious difficulties in pd recognition without the concurrent full EPG, but once located, only subphase II-2 features were clear and supported the II-2 data from the full EPG. Consequently, we could not distinguish subphases of complete pd waveforms better with additional R-EPG information during cell punctures by Aphis gossypii Glover (Hemiptera: Aphididae). In Brevicoryne brassicae (L.) (Hemiptera: Aphididae), however, distinguishing II-2 subphases in the full EPG was sometimes a problem. Our detailed dual-EPG observations showed some waveform continuity from halfway into the II-1 subphase (start of the newly recognised subphase ß) until the end of the pd, with a strong but variable emf origin. This waveform tended to overrule other subphase waveforms in B. brassicae more than in A. gossypii and Myzus persicae (Sulzer) (Hemiptera: Aphididae). Subphase waveforms in full EPGs were especially difficult to recognise when pd periods had been interrupted in a virus inoculation experiment and additional R-EPG information could then be useful. This inoculation experiment showed again that only the first subphase (II-1) contributes to virus (Cucumber mosaic virus) inoculation by A. gossypii. In B. brassicae, the benefit of concurrent R-EPG information in such virus experiments is presently under further investigation. Apart from this special application to virus experiments, we do not recommend the routine use of the dual-EPG device. Furthermore, we do not advocate the distinction of more than the previously recognised three intracellular pd subphases as a feasible option in future studies. Analysis of EPGs with concurrent R-EPGs requires substantially more analysis work without yielding consistently useful additional insights. This confirms earlier dual-EPG results from thrip

    Multistable attractors in a network of phase oscillators with three-body interaction

    Full text link
    Three-body interactions have been found in physics, biology, and sociology. To investigate their effect on dynamical systems, as a first step, we study numerically and theoretically a system of phase oscillators with three-body interaction. As a result, an infinite number of multistable synchronized states appear above a critical coupling strength, while a stable incoherent state always exists for any coupling strength. Owing to the infinite multistability, the degree of synchrony in asymptotic state can vary continuously within some range depending on the initial phase pattern.Comment: 5 pages, 3 figure

    A framework for proving the self-organization of dynamic systems

    Get PDF
    This paper aims at providing a rigorous definition of self- organization, one of the most desired properties for dynamic systems (e.g., peer-to-peer systems, sensor networks, cooperative robotics, or ad-hoc networks). We characterize different classes of self-organization through liveness and safety properties that both capture information re- garding the system entropy. We illustrate these classes through study cases. The first ones are two representative P2P overlays (CAN and Pas- try) and the others are specific implementations of \Omega (the leader oracle) and one-shot query abstractions for dynamic settings. Our study aims at understanding the limits and respective power of existing self-organized protocols and lays the basis of designing robust algorithm for dynamic systems

    Persistent homology of time-dependent functional networks constructed from coupled time series

    Get PDF
    We use topological data analysis to study "functional networks" that we construct from time-series data from both experimental and synthetic sources. We use persistent homology with a weight rank clique filtration to gain insights into these functional networks, and we use persistence landscapes to interpret our results. Our first example uses time-series output from networks of coupled Kuramoto oscillators. Our second example consists of biological data in the form of functional magnetic resonance imaging (fMRI) data that was acquired from human subjects during a simple motor-learning task in which subjects were monitored on three days in a five-day period. With these examples, we demonstrate that (1) using persistent homology to study functional networks provides fascinating insights into their properties and (2) the position of the features in a filtration can sometimes play a more vital role than persistence in the interpretation of topological features, even though conventionally the latter is used to distinguish between signal and noise. We find that persistent homology can detect differences in synchronization patterns in our data sets over time, giving insight both on changes in community structure in the networks and on increased synchronization between brain regions that form loops in a functional network during motor learning. For the motor-learning data, persistence landscapes also reveal that on average the majority of changes in the network loops take place on the second of the three days of the learning process.Comment: 17 pages (+3 pages in Supplementary Information), 11 figures in many text (many with multiple parts) + others in SI, submitte

    Snow tussocks, chaos, and the evolution of mast seeding

    Get PDF
    One hitherto intractable problem in studying mast seeding (synchronous intermittent heavy flowering by a population of perennial plants) is determining the relative roles of weather, plant reserves, and evolutionary selective pressures such as predator satiation. We parameterize a mechanistic resource-based model for mast seeding in Chionochloa pallens (Poaceae) using a long-term individually structured data set. Each plant's energy reserves were reconstructed using annual inputs (growing degree days), outputs (flowering), and a novel regression technique. This allowed the estimation of the parameters that control internal plant resource dynamics, and thereby allowed different models for masting to be tested against each other. Models based only on plant size, season degree days, and/or climatic cues (warm January temperatures) fail to reproduce the pattern of autocovariation in individual flowering and the high levels of flowering synchrony seen in the field. This shows that resource-matching or simple cue-based models cannot account for this example of mast seeding. In contrast, the resource-based model pulsed by a simple climate cue accurately describes both individual-level and population-level aspects of the data. The fitted resource-based model, in the absence of environmental forcing, has chaotic (but often statistically periodic) dynamics. Environmental forcing synchronizes individual reproduction, and the models predict highly variable seed production in close agreement with the data. An evolutionary model shows that the chaotic internal resource dynamics, as predicted by the fitted model, is selectively advantageous provided that adult mortality is low and seeds survive for more than 1 yr, both of which are true for C. pallens. Highly variable masting and chaotic dynamics appear to be advantageous in this case because they reduce seed losses to specialist seed predators, while balancing the costs of missed reproductive events
    • …
    corecore