525 research outputs found

    Persistent Homology Over Directed Acyclic Graphs

    Full text link
    We define persistent homology groups over any set of spaces which have inclusions defined so that the corresponding directed graph between the spaces is acyclic, as well as along any subgraph of this directed graph. This method simultaneously generalizes standard persistent homology, zigzag persistence and multidimensional persistence to arbitrary directed acyclic graphs, and it also allows the study of more general families of topological spaces or point-cloud data. We give an algorithm to compute the persistent homology groups simultaneously for all subgraphs which contain a single source and a single sink in O(n4)O(n^4) arithmetic operations, where nn is the number of vertices in the graph. We then demonstrate as an application of these tools a method to overlay two distinct filtrations of the same underlying space, which allows us to detect the most significant barcodes using considerably fewer points than standard persistence.Comment: Revised versio

    Hochschild homology, and a persistent approach via connectivity digraphs

    Full text link
    We introduce a persistent Hochschild homology framework for directed graphs. Hochschild homology groups of (path algebras of) directed graphs vanish in degree i2i\geq 2. To extend them to higher degrees, we introduce the notion of connectivity digraphs and analyse two main examples; the first, arising from Atkin's qq-connectivity, and the second, here called nn-path digraphs, generalising the classical notion of line graphs. Based on a categorical setting for persistent homology, we propose a stable pipeline for computing persistent Hochschild homology groups. This pipeline is also amenable to other homology theories; for this reason, we complement our work with a survey on homology theories of digraphs.Comment: Comments are welcome

    Forman's Ricci curvature - From networks to hypernetworks

    Full text link
    Networks and their higher order generalizations, such as hypernetworks or multiplex networks are ever more popular models in the applied sciences. However, methods developed for the study of their structural properties go little beyond the common name and the heavy reliance of combinatorial tools. We show that, in fact, a geometric unifying approach is possible, by viewing them as polyhedral complexes endowed with a simple, yet, the powerful notion of curvature - the Forman Ricci curvature. We systematically explore some aspects related to the modeling of weighted and directed hypernetworks and present expressive and natural choices involved in their definitions. A benefit of this approach is a simple method of structure-preserving embedding of hypernetworks in Euclidean N-space. Furthermore, we introduce a simple and efficient manner of computing the well established Ollivier-Ricci curvature of a hypernetwork.Comment: to appear: Complex Networks '18 (oral presentation

    Simplicial Complexes From Graphs Toward Graph Persistence

    Get PDF
    Persistent homology is a branch of computational topology which uses geometry and topology for shape description and analysis. This dissertation is an introductory study to link persistent homology and graph theory, the connection being represented by various methods to build simplicial complexes from a graph. The methods we consider are the complex of cliques, of independent sets, of neighbours, of enclaveless sets and complexes from acyclic subgraphs, each revealing several properties of the underlying graph. Moreover, we apply the core ideas of persistence theory in the new context of graph theory, we define the persistent block number and the persistent edge-block number

    Hardness of Approximation for Morse Matching

    Full text link
    Discrete Morse theory has emerged as a powerful tool for a wide range of problems, including the computation of (persistent) homology. In this context, discrete Morse theory is used to reduce the problem of computing a topological invariant of an input simplicial complex to computing the same topological invariant of a (significantly smaller) collapsed cell or chain complex. Consequently, devising methods for obtaining gradient vector fields on complexes to reduce the size of the problem instance has become an emerging theme over the last decade. While computing the optimal gradient vector field on a simplicial complex is NP-hard, several heuristics have been observed to compute near-optimal gradient vector fields on a wide variety of datasets. Understanding the theoretical limits of these strategies is therefore a fundamental problem in computational topology. In this paper, we consider the approximability of maximization and minimization variants of the Morse matching problem, posed as open problems by Joswig and Pfetsch. We establish hardness results for Max-Morse matching and Min-Morse matching. In particular, we show that, for a simplicial complex with n simplices and dimension d3d \leq 3, it is NP-hard to approximate Min-Morse matching within a factor of O(n1ϵ)O(n^{1-\epsilon}), for any ϵ>0\epsilon > 0. Moreover, using an L-reduction from Degree 3 Max-Acyclic Subgraph to Max-Morse matching, we show that it is both NP-hard and UGC-hard to approximate Max-Morse matching for simplicial complexes of dimension d2d \leq 2 within certain explicit constant factors.Comment: 20 pages, 1 figur
    corecore