383 research outputs found

    Persistence of strong silica-enriched domains in the Earth's lower mantle

    Get PDF
    The composition of the lower mantle—comprising 56% of Earth’s volume—remains poorly constrained. Among the major elements, Mg/Si ratios ranging from ∼0.9–1.1, such as in rocky Solar-System building blocks (or chondrites), to ∼1.2–1.3, such as in upper-mantle rocks (or pyrolite), have been proposed. Geophysical evidence for subducted lithosphere deep in the mantle has been interpreted in terms of efficient mixing, and thus homogenous Mg/Si across most of the mantle. However, previous models did not consider the effects of variable Mg/Si on the viscosity and mixing efficiency of lower-mantle rocks. Here, we use geodynamic models to show that large-scale heterogeneity associated with a 20-fold change in viscosity, such as due to the dominance of intrinsically strong (Mg, Fe)SiO3–bridgmanite in low-Mg/Si domains, is sufficient to prevent efficient mantle mixing, even on large scales. Models predict that intrinsically strong domains stabilize mantle convection patterns, and coherently persist at depths of about 1,000–2,200 km up to the present-day, separated by relatively narrow up-/downwelling conduits of pyrolitic material. The stable manifestation of such bridgmanite-enriched ancient mantle structures (BEAMS) may reconcile the geographical fixity of deep-rooted mantle upwelling centres, and geophysical changes in seismic-tomography patterns, radial viscosity, rising plumes and sinking slabs near 1,000 km depth. Moreover, these ancient structures may provide a reservoir to host primordial geochemical signatures

    Workshop on the Early Earth: The Interval from Accretion to the Older Archean

    Get PDF
    Presentation abstracts are compiled which address various issues in Earth developmental processes in the first one hundred million years. The session topics included: accretion of the Earth (processes accompanying immediately following the accretion, including core formation); impact records and other information from planets and the Moon relevant to early Earth history; isotopic patterns of the oldest rocks; and igneous, sedimentary, and metamorphic petrology of the oldest rocks

    The evolution and distribution of recycled oceanic crust in the Earth's mantle: Insight from geodynamic models

    Get PDF
    A better understanding of the Earth's compositional structure is needed to place the geochemical record of surface rocks into the context of Earth accretion and evolution. Cosmochemical constraints imply that lower-mantle rocks may be enriched in silica relative to upper-mantle pyrolite, whereas geophysical observations support whole-mantle convection and mixing. To resolve this discrepancy, it has been suggested that subducted mid-ocean ridge basalt (MORB) segregates from subducted harzburgite to accumulate in the mantle transition zone (MTZ) and/or the lower mantle. However, the key parameters that control basalt segregation and accumulation remain poorly constrained. Here, we use global-scale 2D thermochemical convection models to investigate the influence of mantle-viscosity profile, planetary-tectonic style and bulk composition on the evolution and distribution of mantle heterogeneity. Our models robustly predict that, for all cases with Earth-like tectonics, a basalt-enriched reservoir is formed in the MTZ, and a harzburgite-enriched reservoir is sustained at 660∼800 km depth, despite ongoing whole-mantle circulation. The enhancement of basalt and harzburgite in and beneath the MTZ, respectively, are laterally variable, ranging from ∼30% to 50% basalt fraction, and from ∼40% to 80% harzburgite enrichment relative to pyrolite. Models also predict an accumulation of basalt near the core mantle boundary (CMB) as thermochemical piles, as well as moderate enhancement of most of the lower mantle by basalt. While the accumulation of basalt in the MTZ does not strongly depend on the mantle-viscosity profile (explained by a balance between basalt delivery by plumes and removal by slabs at the given MTZ capacity), that of the lowermost mantle does: lower-mantle viscosity directly controls the efficiency of basalt segregation (and entrainment) near the CMB; upper-mantle viscosity has an indirect effect through controlling slab thickness. Finally, the composition of the bulk-silicate Earth may be shifted relative to that of upper-mantle pyrolite, if indeed significant reservoirs of basalt exist in the MTZ and lower mantle

    Extrinsic elastic anisotropy in a compositionally heterogeneous Earth's mantle

    Get PDF
    Several theoretical studies indicate that a substantial fraction of the measured seismic anisotropy could be interpreted as extrinsic anisotropy associated with compositional layering in rocks, reducing the significance of strain‐induced intrinsic anisotropy. Here, we quantify the potential contribution of grain‐scale and rock‐scale compositional anisotropy to the observations by (i) combining effective medium theories with realistic estimates of mineral isotropic elastic properties, and (ii) measuring velocities of synthetic seismic waves propagating through modelled strain‐induced microstructures. It is shown that for typical mantle and oceanic crust sub‐solidus compositions, rock‐scale compositional layering does not generate any substantial extrinsic anisotropy (<1%) because of the limited contrast in isotropic elastic moduli among different rocks. Quasi‐laminated structures observed in subducting slabs using P‐ and S‐ wave scattering are often invoked as a source of extrinsic anisotropy, but our calculations show that they only generate minor seismic anisotropy (<0.1‐0.2% of Vp and Vs radial anisotropy). More generally, rock‐scale compositional layering, when present, cannot be detected with seismic anisotropy studies, but mainly with wave scattering. In contrast, when grain‐scale layering is present, significant extrinsic anisotropy could exist in vertically limited levels of the mantle such as in a MORB‐rich lower transition zone or in the uppermost lower mantle where foliated basalts and pyrolites display up to 2‐3% Vp and 3‐6% Vs radial anisotropy. Thus, seismic anisotropy observed around the 660 km discontinuity could be possibly related to grain‐scale SPO. Extrinsic anisotropy can form also in a compositionally homogeneous mantle, where velocity variations associated with major phase transitions can generate up to 1% of positive radial anisotropy

    Variable dynamic styles of primordial heterogeneity preservation in the Earth's lower mantle

    Get PDF
    The evolution of the system Earth is critically influenced by the long-term dynamics, composition and structure of the mantle. While cosmochemical and geochemical constraints indicate that the lower mantle hosts an ancient primordial reservoir that may be enriched in SiO2 with respect to the upper mantle, geophysical observations and models point to efficient mass transfer and convective mixing across the entire mantle. Recent hypotheses of primordial-material preservation in a convecting mantle involve delayed mixing of intrinsically dense and/or intrinsically strong heterogeneity. Yet, the effects of composition-dependent rheology and density upon heterogeneity preservation and the dynamics of mantle mixing remain poorly understood. Here, we present two-dimensional numerical models in spherical geometry, investigating the preservation styles of primordial material as a function of its physical properties (i.e., viscosity and density contrasts). We establish multiple regimes of primordial-material preservation that can occur in terrestrial planets. These include (1) efficient mixing, (2) double-layered convection with or without topography, and (3) variable styles of partial heterogeneity preservation (e.g., as diffuse domains, piles or viscous blobs in the lower mantle). Some of these regimes are here characterised for the first time, and all regimes are put into context with each other as a function of model parameters. The viscous-blobs and diffuse-domains regimes can reconcile the preservation of primordial domains in a convecting mantle, potentially resolving the discrepancy between geochemical and geophysical constraints for planet Earth. Several, if not all, regimes characterised here may be relevant to understand the long-term evolution of terrestrial planets in general

    Light elements in the Earth’s core

    Get PDF
    Constraining the core’s composition is essential for understanding Earth accretion, core formation and the sustainment of Earth’s magnetic field. Earth’s outer and inner core exhibit a density deficit relative to pure iron, attributed to the presence of substantial amounts of low atomic number ‘light’ elements, such as sulfur, silicon, oxygen, carbon and hydrogen. However, owing to its inaccessibility, estimates of core composition can only be indirectly obtained by matching results from high-pressure experiments and theoretical calculations with seismic observations. In this Review, we discuss the properties and phase relations of iron alloys under high-pressure and high-temperature conditions relevant to the Earth’s core. We synthesize mineral physics data with cosmochemical and geochemical estimates to give the likely range of compositions for the outer (Fe + 5% Ni + 1.7% S + 0–4.0% Si + 0.8–5.3% O + 0.2% C + 0–0.26% H by weight) and inner (Fe + 5% Ni + 0–1.1% S + 0–2.3% Si + 0–0.1% O + 0–1.3% C + 0–0.23% H by weight) core. While the exact composition of the core remains unknown, tighter constraints on core temperature and better connections between the solid inner core and the liquid outer core compositions will help narrow the range of potential light element compositions

    Workshop on the Martian Surface and Atmosphere Through Time

    Get PDF
    The purpose of the workshop was to bring together the Mars Surface and Atmosphere Through Time (MSATT) Community and interested researchers to begin to explore the interdisciplinary nature of, and to determine the relationships between, various aspects of Mars science that involve the geological and chemical evolution of its surface, the structure and dynamics of its atmosphere, interactions between the surface and atmosphere, and the present and past states of its volatile endowment and climate system
    corecore