999 research outputs found

    Membrane-based design and management methodology for parallel dynamically reconfigurable embedded systems

    Get PDF
    International audiencePartial and dynamic reconfiguration provides a relevant new dimension to design efficient parallel embedded systems. However, due to the encasing complexity of such systems, ensuring the consistency and parallelism management at runtime is still a key challenge. So architecture models and design methodology are required to allow for efficient component reuse and hardware reconfiguration management.This paper presents a distributed persistence management model and its implementation for reconfigurable multiprocessor systems on dynamically reconfigurable circuits. The proposed approach is inspired from the well-known component based models used in software applications development. Our model is based on membranes wrapping the systems components. The objective is to improve design productivity and ensure consistency by managing context switching and storage using modular distributed hardware controllers. These membranes are distributed and optimized with the aim to design self-adaptive systems by allowing dynamic changes in parallelism degree and contexts migration. Simulation and synthesis results are given to show performances and effectiveness of our methodology

    Reconfigurable mobile communications: compelling needs and technologies to support reconfigurable terminals

    Get PDF

    Reconfigurability Function Deployment in Software Development

    Get PDF
    In the forthcoming highly dynamic and complex business environment high-speed and cost-effective development of software applications for targeting a precise, unique and momentary set of requirements (no more-no less) associated to a customized business case will bring sig-nificant benefits both for producers and users. This requires a life cycle change-oriented ap-proach in software development. In this respect, designing software with intrinsic evolutionary resources for reconfiguration represents the sound approach. A methodology for concurrent deployment of reconfigurability characteristics in software applications is introduced in this paper. Its potential is exemplified in a case study dealing with web-based software tools to support systematic product innovation projects.Reconfigurability, Software Development, Innovation, TRIZ, RAD

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine

    Revisiting Actor Programming in C++

    Full text link
    The actor model of computation has gained significant popularity over the last decade. Its high level of abstraction makes it appealing for concurrent applications in parallel and distributed systems. However, designing a real-world actor framework that subsumes full scalability, strong reliability, and high resource efficiency requires many conceptual and algorithmic additives to the original model. In this paper, we report on designing and building CAF, the "C++ Actor Framework". CAF targets at providing a concurrent and distributed native environment for scaling up to very large, high-performance applications, and equally well down to small constrained systems. We present the key specifications and design concepts---in particular a message-transparent architecture, type-safe message interfaces, and pattern matching facilities---that make native actors a viable approach for many robust, elastic, and highly distributed developments. We demonstrate the feasibility of CAF in three scenarios: first for elastic, upscaling environments, second for including heterogeneous hardware like GPGPUs, and third for distributed runtime systems. Extensive performance evaluations indicate ideal runtime behaviour for up to 64 cores at very low memory footprint, or in the presence of GPUs. In these tests, CAF continuously outperforms the competing actor environments Erlang, Charm++, SalsaLite, Scala, ActorFoundry, and even the OpenMPI.Comment: 33 page

    Data Provenance and Management in Radio Astronomy: A Stream Computing Approach

    Get PDF
    New approaches for data provenance and data management (DPDM) are required for mega science projects like the Square Kilometer Array, characterized by extremely large data volume and intense data rates, therefore demanding innovative and highly efficient computational paradigms. In this context, we explore a stream-computing approach with the emphasis on the use of accelerators. In particular, we make use of a new generation of high performance stream-based parallelization middleware known as InfoSphere Streams. Its viability for managing and ensuring interoperability and integrity of signal processing data pipelines is demonstrated in radio astronomy. IBM InfoSphere Streams embraces the stream-computing paradigm. It is a shift from conventional data mining techniques (involving analysis of existing data from databases) towards real-time analytic processing. We discuss using InfoSphere Streams for effective DPDM in radio astronomy and propose a way in which InfoSphere Streams can be utilized for large antennae arrays. We present a case-study: the InfoSphere Streams implementation of an autocorrelating spectrometer, and using this example we discuss the advantages of the stream-computing approach and the utilization of hardware accelerators

    Applying Software Product Lines to Build Autonomic Pervasive Systems

    Full text link
    In this Master Thesis, we have proposed a model-driven Software Product Line (SPL) for developing autonomic pervasive systems. The work focusses on reusing the Variability knowledge from the SPL design to the SPL products. This Variability knowledge enables SPL products to deal with adaptation scenarios (evolution and involution) in an autonomic way.Cetina Englada, C. (2008). Applying Software Product Lines to Build Autonomic Pervasive Systems. http://hdl.handle.net/10251/12447Archivo delegad
    • …
    corecore