431,832 research outputs found

    A kinetic and theoretical study of the borate catalysed reactions of hydrogen peroxide: the role of dioxaborirane as the catalytic intermediate for a wide range of substrates

    Get PDF
    Our recent work has provided new insights into the equilibria and species that exist in aqueous solution at different pHs for the boric acid – hydrogen peroxide system, and the role of these species in oxidation reactions. Most recently, (M. C. Durrant, D. M. Davies and M. E. Deary, Org. Biomol. Chem., 2011, 9,7249–7254), we have produced strong theoretical and experimental evidence for the existence of a previously unreported monocyclic three membered peroxide species, dioxaborirane, that is the likely catalytic species in borate mediated electrophilic reactions of hydrogen peroxide in alkaline solution. In the present paper, we extend our study of the borate–peroxide system to look at a wide range of substrates that include substituted dimethyl anilines, methyl-p-tolyl sulfoxide, halides, hydrogen sulfide anion, thiosulfate ,thiocyanate, and hydrazine. The unusual selectivity–reactivity pattern of borate catalysed reactions compared with hydrogen peroxide and inorganic or organic peracids previously observed for theorganic sulfides (D. M. Davies, M. E. Deary, K. Quill and R. A. Smith, Chem.–Eur. J., 2005, 11, 3552–3558) is also seen with substituted dimethyl aniline nucleophiles. This provides evidence that the pattern is not due to any latent electrophilic tendency of the organic sulfides and further supports dioxaborirane being the likely reactive intermediate, thus broadening the applicability of this catalytic system. Moreover, density functional theory calculations on our proposed mechanism involving dioxaborirane are consistent with the experimental results for these substrates. Results obtained at high concentrations of both borate and hydrogen peroxide require the inclusion the diperoxodiborate dianion in the kinetic analysis .A scheme detailing our current understanding of the borate–peroxide system is presented

    Profile of clindamycin phosphate 1.2%/benzoyl peroxide 3.75% aqueous gel for the treatment of acne vulgaris.

    Get PDF
    Acne vulgaris is a common and chronic skin disease, and is a frequent source of morbidity for affected patients. Treatment of acne vulgaris is often difficult due to the multifactorial nature of this disease. Combination therapy, such as that containing clindamycin and benzoyl peroxide, has become the standard of care. Several fixed formulations of clindamycin 1% and benzoyl peroxide of varying concentrations are available and have been used with considerable success. The major limitation is irritation and dryness from higher concentrations of benzoyl peroxide, and a combination providing optimal efficacy and tolerability has yet to be determined. Recently, a clindamycin and benzoyl peroxide 3.75% fixed combination formulation was developed. Studies have suggested that this formulation may be a safe and effective treatment regimen for patients with acne vulgaris. Here, we provide a brief review of acne pathogenesis, benzoyl peroxide and clindamycin, and profile a new Clindamycin-BP 3.75% fixed combination gel for the treatment of moderate-to-severe acne vulgaris

    Aetiology and treatment of epidermal depigmentory disorder in humans

    Get PDF
    The epidermal depigmentary trigger in humans at post-natal level may occur with the toxification of skin organ with the endogenously produced melanocytotoxic hydrogen peroxide and subsequent formation of hydrogen peroxide- melanolipoprotein conjugate involving the hydrogen bonding of complementary hydroxyl and carbonyl molecular surfaces of these biosignitures respectively. The condition is multifactorial but reversible. The structural and functional degeneration of melanocytes under the acquired condition never occur. The molecular conjugation theory on the aetiology and line of treatment of the epidermal depigmentary disorder (recoined as hepato-epidermal syndrome HES) has been proposed. The inherent sulfoxides of Allium cepa have been found as the renaturant of HES condition with the capacity to dislodge the denaturant hydrogen peroxide forming stronger hydrogen bonding with hydrogen peroxide than that of carbonyl molecular surface of melanolipoprotein, the epidermal colour determinant. The orally and topically defined plant based combined therapy advances the recovery time of HES condition

    Oxidative Stress Detection With Escherichia Coli Harboring A katG\u27::lux Fusion

    Get PDF
    A plasmid containing a transcriptional fusion of the Escherichia coli katG promoter to a truncated Vibrio fischeri lux operon (luxCDABE) was constructed. An E. coli strain bearing this plasmid (strain DPD2511) exhibited low basal levels of luminescence, which increased up to 1,000-fold in the presence of hydrogen peroxide, organic peroxides, redox-cycling agents (methyl viologen and menadione), a hydrogen peroxide-producing enzyme system (xanthine and xanthine oxidase), and cigarette smoke. An oxyR deletion abolished hydrogen peroxide-dependent induction, confirming that oxyR controlled katG\u27::lux luminescence. Light emission was also induced by ethanol by an unexplained mechanism. A marked synergistic response was observed when cells were exposed to both ethanol and hydrogen peroxide; the level of luminescence measured in the presence of both inducers was much higher than the sum of the level of luminescence observed with ethanol and the level of luminescence observed with hydrogen peroxide. It is suggested that this construction or similar constructions may be used as a tool for assaying oxidant and antioxidant properties of chemicals, as a biosensor for environmental monitoring and as a tool for studying cellular responses to oxidative hazards

    The synthesis and utilization of low molecular weight ozonides for air revitalization Supplement to interim report of 14 Nov. 1965

    Get PDF
    Thermal decomposition characteristics of sodium superoxide, sodium peroxide, and lithium peroxide and magnetic susceptibility of calcium superoxid

    Vibrational overtone initiated unimolecular dissociation of HOCH_2OOH and HOCD_2OOH: Evidence for mode selective behavior

    Get PDF
    The vibrational overtone induced unimolecular dissociation of HMHP (HOCH2OOH) and HMHP-d2 (HOCD2OOH) into OH and HOCH2O (HOCD2O) fragments is investigated in the region of the 4nuOH and 5nuOH bands. The unimolecular dissociation rates in the threshold region, corresponding to the 4nuOH band, exhibit measurable differences associated with excitation of the OH stretch of the alcohol versus the peroxide functional group, with the higher energy alcohol OH stretching state exhibiting a slower dissociation rate compared to the lower energy peroxide OH stretch in both HMHP and HMHP-d2. Predictions using the Rice–Ramsperger–Kassel–Marcus theory give rates that are in reasonably good agreement with the measured dissociation rate for the alcohol OH stretch but considerably differ from the measured rates for the peroxide OH stretch in both isotopomers. The present results are interpreted as suggesting that the extent of intramolecular vibrational energy redistribution (IVR) is different for the two OH stretching states associated with the two functional groups in HMHP, with IVR being substantially less complete for the peroxide OH stretch. Analysis of the OH fragment product state distributions in conjunction with phase-space theory simulation gives a D0 value of 38±0.7 kcal/mole for breaking the peroxide bond in HMHP

    Thermal oscillations in the decomposition of organic peroxides: Identification of a hazard, utilization, and suppression

    Get PDF
    The purpose of this research is to identify and characterize oscillatory thermal instability in organic peroxides that are used in vast quantities in industry and misused by terrorists. The explosive thermal decompositions of lauroyl peroxide, methyl ethyl ketone peroxide, and triacetone triperoxide are investigated computationally, using a continuous stirred tank reactor model and literature values of the kinetic and thermal parameters. Mathematical stability analysis is used to identify and track the oscillatory instability, which may be violent. In the mild oscillatory regime it is shown that, in principle, the oscillatory thermal signal may be used in microcalorimetry to detect and identify explosives. Stabilization of peroxide thermal decomposition via Endex coupling is investigated. It is usually assumed that initiation of explosive thermal decomposition occurs via classical (Semenov) ignition at a turning point or saddle-node bifurcation, but this work shows that oscillatory ignition is also characteristic of thermoreactive liquids and that Semenov theory and purely steady state analyses are inadequate for identifying a thermal hazard in such systems
    corecore