1,348 research outputs found

    Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

    Full text link
    Empirical evidence suggests that heavy-tailed degree distributions occurring in many real networks are well-approximated by power laws with exponents η\eta that may take values either less than and greater than two. Models based on various forms of exchangeability are able to capture power laws with η<2\eta < 2, and admit tractable inference algorithms; we draw on previous results to show that η>2\eta > 2 cannot be generated by the forms of exchangeability used in existing random graph models. Preferential attachment models generate power law exponents greater than two, but have been of limited use as statistical models due to the inherent difficulty of performing inference in non-exchangeable models. Motivated by this gap, we design and implement inference algorithms for a recently proposed class of models that generates η\eta of all possible values. We show that although they are not exchangeable, these models have probabilistic structure amenable to inference. Our methods make a large class of previously intractable models useful for statistical inference.Comment: Accepted for publication in the proceedings of Conference on Uncertainty in Artificial Intelligence (UAI) 201

    Class Proportion Estimation with Application to Multiclass Anomaly Rejection

    Full text link
    This work addresses two classification problems that fall under the heading of domain adaptation, wherein the distributions of training and testing examples differ. The first problem studied is that of class proportion estimation, which is the problem of estimating the class proportions in an unlabeled testing data set given labeled examples of each class. Compared to previous work on this problem, our approach has the novel feature that it does not require labeled training data from one of the classes. This property allows us to address the second domain adaptation problem, namely, multiclass anomaly rejection. Here, the goal is to design a classifier that has the option of assigning a "reject" label, indicating that the instance did not arise from a class present in the training data. We establish consistent learning strategies for both of these domain adaptation problems, which to our knowledge are the first of their kind. We also implement the class proportion estimation technique and demonstrate its performance on several benchmark data sets.Comment: Accepted to AISTATS 2014. 15 pages. 2 figure

    Path integral Monte Carlo simulation of charged particles in traps

    Full text link
    This chapter is devoted to the computation of equilibrium (thermodynamic) properties of quantum systems. In particular, we will be interested in the situation where the interaction between particles is so strong that it cannot be treated as a small perturbation. For weakly coupled systems many efficient theoretical and computational techniques do exist. However, for strongly interacting systems such as nonideal gases or plasmas, strongly correlated electrons and so on, perturbation methods fail and alternative approaches are needed. Among them, an extremely successful one is the Monte Carlo (MC) method which we are going to consider in this chapter.Comment: 18 pages, based on talks on Hareaus school on computational methods, Greifswald, September 200

    Shuffled Multi-Channel Sparse Signal Recovery

    Full text link
    Mismatches between samples and their respective channel or target commonly arise in several real-world applications. For instance, whole-brain calcium imaging of freely moving organisms, multiple-target tracking or multi-person contactless vital sign monitoring may be severely affected by mismatched sample-channel assignments. To systematically address this fundamental problem, we pose it as a signal reconstruction problem where we have lost correspondences between the samples and their respective channels. Assuming that we have a sensing matrix for the underlying signals, we show that the problem is equivalent to a structured unlabeled sensing problem, and establish sufficient conditions for unique recovery. To the best of our knowledge, a sampling result for the reconstruction of shuffled multi-channel signals has not been considered in the literature and existing methods for unlabeled sensing cannot be directly applied. We extend our results to the case where the signals admit a sparse representation in an overcomplete dictionary (i.e., the sensing matrix is not precisely known), and derive sufficient conditions for the reconstruction of shuffled sparse signals. We propose a robust reconstruction method that combines sparse signal recovery with robust linear regression for the two-channel case. The performance and robustness of the proposed approach is illustrated in an application related to whole-brain calcium imaging. The proposed methodology can be generalized to sparse signal representations other than the ones considered in this work to be applied in a variety of real-world problems with imprecise measurement or channel assignment.Comment: Submitted to TS
    corecore