2,800 research outputs found

    On Discrimination Discovery and Removal in Ranked Data using Causal Graph

    Full text link
    Predictive models learned from historical data are widely used to help companies and organizations make decisions. However, they may digitally unfairly treat unwanted groups, raising concerns about fairness and discrimination. In this paper, we study the fairness-aware ranking problem which aims to discover discrimination in ranked datasets and reconstruct the fair ranking. Existing methods in fairness-aware ranking are mainly based on statistical parity that cannot measure the true discriminatory effect since discrimination is causal. On the other hand, existing methods in causal-based anti-discrimination learning focus on classification problems and cannot be directly applied to handle the ranked data. To address these limitations, we propose to map the rank position to a continuous score variable that represents the qualification of the candidates. Then, we build a causal graph that consists of both the discrete profile attributes and the continuous score. The path-specific effect technique is extended to the mixed-variable causal graph to identify both direct and indirect discrimination. The relationship between the path-specific effects for the ranked data and those for the binary decision is theoretically analyzed. Finally, algorithms for discovering and removing discrimination from a ranked dataset are developed. Experiments using the real dataset show the effectiveness of our approaches.Comment: 9 page

    High-Dimensional Joint Estimation of Multiple Directed Gaussian Graphical Models

    Full text link
    We consider the problem of jointly estimating multiple related directed acyclic graph (DAG) models based on high-dimensional data from each graph. This problem is motivated by the task of learning gene regulatory networks based on gene expression data from different tissues, developmental stages or disease states. We prove that under certain regularity conditions, the proposed â„“0\ell_0-penalized maximum likelihood estimator converges in Frobenius norm to the adjacency matrices consistent with the data-generating distributions and has the correct sparsity. In particular, we show that this joint estimation procedure leads to a faster convergence rate than estimating each DAG model separately. As a corollary, we also obtain high-dimensional consistency results for causal inference from a mix of observational and interventional data. For practical purposes, we propose \emph{jointGES} consisting of Greedy Equivalence Search (GES) to estimate the union of all DAG models followed by variable selection using lasso to obtain the different DAGs, and we analyze its consistency guarantees. The proposed method is illustrated through an analysis of simulated data as well as epithelial ovarian cancer gene expression data
    • …
    corecore