388 research outputs found

    Periodicity, repetitions, and orbits of an automatic sequence

    Get PDF
    We revisit a technique of S. Lehr on automata and use it to prove old and new results in a simple way. We give a very simple proof of the 1986 theorem of Honkala that it is decidable whether a given k-automatic sequence is ultimately periodic. We prove that it is decidable whether a given k-automatic sequence is overlap-free (or squareefree, or cubefree, etc.) We prove that the lexicographically least sequence in the orbit closure of a k-automatic sequence is k-automatic, and use this last result to show that several related quantities, such as the critical exponent, irrationality measure, and recurrence quotient for Sturmian words with slope alpha, have automatic continued fraction expansions if alpha does.Comment: preliminary versio

    Introduction: Special volume in honor of Jeffrey Shallit on the occasion of his 60th birthday

    Get PDF
    http://math.colgate.edu/~integers/ShallitIntro.pd

    Decidability of the HD0L ultimate periodicity problem

    Full text link
    In this paper we prove the decidability of the HD0L ultimate periodicity problem

    The Critical Exponent is Computable for Automatic Sequences

    Full text link
    The critical exponent of an infinite word is defined to be the supremum of the exponent of each of its factors. For k-automatic sequences, we show that this critical exponent is always either a rational number or infinite, and its value is computable. Our results also apply to variants of the critical exponent, such as the initial critical exponent of Berthe, Holton, and Zamboni and the Diophantine exponent of Adamczewski and Bugeaud. Our work generalizes or recovers previous results of Krieger and others, and is applicable to other situations; e.g., the computation of the optimal recurrence constant for a linearly recurrent k-automatic sequence.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Abelian-Square-Rich Words

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain at most Θ(n2)\Theta(n^2) distinct factors, and there exist words of length nn containing Θ(n2)\Theta(n^2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length nn grows quadratically with nn. More precisely, we say that an infinite word ww is {\it abelian-square-rich} if, for every nn, every factor of ww of length nn contains, on average, a number of distinct abelian-square factors that is quadratic in nn; and {\it uniformly abelian-square-rich} if every factor of ww contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue-Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n2n of the Thue-Morse word is 22-regular. As for Sturmian words, we prove that a Sturmian word sαs_{\alpha} of angle α\alpha is uniformly abelian-square-rich if and only if the irrational α\alpha has bounded partial quotients, that is, if and only if sαs_{\alpha} has bounded exponent.Comment: To appear in Theoretical Computer Science. Corrected a flaw in the proof of Proposition
    • …
    corecore