98,568 research outputs found

    On the bifurcation and continuation of periodic orbits in the three-body problem

    Full text link
    We consider the planar three body problem of planetary type and we study the generation and continuation of periodic orbits and mainly of asymmetric periodic orbits. Asymmetric orbits exist in the restricted circular three body problem only in particular resonances called "asymmetric resonances". However, numerical studies showed that in the general three body problem asymmetric orbits may exist not only for asymmetric resonances, but for other kinds, too. In this work, we show the existence of asymmetric periodic orbits in the elliptic restricted problem. These orbits are continued and clarify the origin of many asymmetric periodic orbits in the general problem. Also, we illustrate how the families of periodic orbits of the restricted circular problem and those of the elliptic one join smoothly and form families in the general problem, verifying in this way the scenario described firstly by Bozis and Hadjidemetriou (1976).Comment: Published at International Journal of Bifurcation and Chaos (IJBC

    New periodic orbits in the solar sail three-body problem

    Get PDF
    We identify displaced periodic orbits in the circular restricted three-body problem, wher the third (small) body is a solar sail. In particular, we consider solar sail orbits in the earth-sun system which are high above the exliptic plane. It is shown that periodic orbits about surfaces of artificial equilibria are naturally present at linear order. Using the method of Lindstedt-Poincare, we construct nth order approximations to periodic solutions of the nonlinear equations of motion. In the second part of the paper we generalize to the solar sail elliptical restricted three-body problem. A numerical continuation, with the eccentricity, e, as the varying parameter, is used to find periodic orbits above the ecliptic, starting from a known orbit at e=0 and continuing to the requied eccentricity of e=0.0167. The stability of these periodic orbits is investigated

    Chaotic Spiral Galaxies

    Full text link
    We study the role of asymptotic curves in supporting the spiral structure of a N-body model simulating a barred spiral galaxy. Chaotic orbits with initial conditions on the unstable asymptotic curves of the main unstable periodic orbits follow the shape of the periodic orbits for an initial interval of time and then they are diffused outwards supporting the spiral structure of the galaxy. Chaotic orbits having small deviations from the unstable periodic orbits, stay close and along the corresponding unstable asymptotic manifolds, supporting the spiral structure for more than 10 rotations of the bar. Chaotic orbits of different Jacobi constants support different parts of the spiral structure. We also study the diffusion rate of chaotic orbits outwards and find that chaotic orbits that support the outer parts of the galaxy are diffused outwards more slowly than the orbits supporting the inner parts of the spiral structure.Comment: 14 pages, 11 figure

    Resonant periodic orbits in the exoplanetary systems

    Full text link
    The planetary dynamics of 4/34/3, 3/23/2, 5/25/2, 3/13/1 and 4/14/1 mean motion resonances is studied by using the model of the general three body problem in a rotating frame and by determining families of periodic orbits for each resonance. Both planar and spatial cases are examined. In the spatial problem, families of periodic orbits are obtained after analytical continuation of vertical critical orbits. The linear stability of orbits is also examined. Concerning initial conditions nearby stable periodic orbits, we obtain long-term planetary stability, while unstable orbits are associated with chaotic evolution that destabilizes the planetary system. Stable periodic orbits are of particular importance in planetary dynamics, since they can host real planetary systems. We found stable orbits up to 6060^\circ of mutual planetary inclination, but in most families, the stability does not exceed 2020^\circ-3030^\circ, depending on the planetary mass ratio. Most of these orbits are very eccentric. Stable inclined circular orbits or orbits of low eccentricity were found in the 4/34/3 and 5/25/2 resonance, respectively.Comment: Accepted for publication in Astrophysics and Space Science. Link to the published article on Springer's website was inserte

    Statistical properties of periodic orbits in 4-disk billiard system: pruning-proof property

    Full text link
    Periodic orbit theory for classical hyperbolic system is very significant matter of how we can interpret spectral statistics in terms of semiclassical theory. Although pruning is significant and generic property for almost all hyperbolic systems, pruning-proof property for the correlation among the periodic orbits which gains a resurgence of second term of the random matrix form factor remains open problem. In the light of the semiclassical form factor, our attention is paid to statistics for the pairs of periodic orbits. Also in the context of pruning, we investigated statistical properties of the "actual" periodic orbits in 4-disk billiard system. This analysis presents some universality for pair-orbits' statistics. That is, even if the pruning progresses, there remains the periodic peak structure in the statistics for periodic orbit pairs. From that property, we claim that if the periodic peak structure contributes to the correlation, namely the off-diagonal part of the semiclassical form factor, then the correlation must remain while pruning progresse.Comment: 30 pages, 58 figure

    Planar resonant periodic orbits in Kuiper belt dynamics

    Full text link
    In the framework of the planar restricted three body problem we study a considerable number of resonances associated to the Kuiper Belt dynamics and located between 30 and 48 a.u. Our study is based on the computation of resonant periodic orbits and their stability. Stable periodic orbits are surrounded by regular librations in phase space and in such domains the capture of trans-Neptunian object is possible. All the periodic orbits found are symmetric and there is evidence for the existence of asymmetric ones only in few cases. In the present work first, second and third order resonances are under consideration. In the planar circular case we found that most of the periodic orbits are stable. The families of periodic orbits are temporarily interrupted by collisions but they continue up to relatively large values of the Jacobi constant and highly eccentric regular motion exists for all cases. In the elliptic problem and for a particular eccentricity value of the primary bodies the periodic orbits are isolated. The corresponding families, where they belong to, bifurcate from specific periodic orbits of the circular problem and seem to continue up to the rectilinear problem. Both stable and unstable orbits are obtained for each case. In the elliptic problem the unstable orbits found are associated with narrow chaotic domains in phase space. The evolution of the orbits, which are located in such chaotic domains, seems to be practically regular and bounded for long time intervals.Comment: preprint, 20 pages, 10 figure
    corecore