12 research outputs found

    Channelization, Link Adaptation and Multi-antenna Techniques for OFDM(A) Based Wireless Systems

    Get PDF

    Techniques to Enhance Spectral Efficiency of OFDM Wireless Systems

    Get PDF

    Design of serially-concatenated LDGM codes

    Get PDF
    [Resumen] Since Shannon demonstrated in 1948 the feasibility of achieving an arbitrarily low error probability in a communications system provided that the transmission rate was kept below a certain limit, one of the greatest challenges in the realm of digital communications and, more specifically, in the channel coding field, has been finding codes that are able to approach this limit as much as possible with a reasonable encoding and decoding complexity, However, it was not until 1993, when Berrou et al. presented the turbo codes, that a coding scheme capable of performing at less than 1dB from Shannon's limit with an extremely low error probability was found. The idea on which these codes are based is the iterative decoding of concatenated components that exchange information about the transmitted bits, which is known as the "turbo principle". The generalization of this idea led in 1995 to the rediscovery of LDPC (Low Density Parity Check) codes, proposed for the first time by Gallager in the 60s. LDPC codes are linear block codes with a sparse parity check matrix that are able to surpass the performance of turbo codes with a smaller decoding complexity. However, due to the fact that the generator matrix of general LDPC codes is not sparse, their encoding complexity can be excessively high. LDGM (Low Density Generator Matrix) codes, a particular case of LDPC codes, are codes with a sparse generator matrix, thanks to which they present a lower encoding complexity. However, except for the case of very high rate codes, LDGM codes are "bad", i.e., they have a non-zero error probability that is independent of the code block length. More recently, IRA (Irregular Repeat-Accumulated) codes, consisting of the serial concatenation of a LDGM code and an accumulator, have been proposed. IRA codes are able to get close to the performance of LDPC codes with an encoding complexity similar to that of LDGM codes. In this thesis we explore an alternative to IRA codes consisting in the serial concatenation of two LDGM codes, a scheme that we will denote SCLDGM (Serially-Concatenated Low-Density Generator Matrix). The basic premise of SCLDGM codes is that an inner code of rate close to the desired transmission rate fixes most of the errors, and an external code of rate close to one corrects the few errors that result from decoding the inner code. For any of these schemes to perform as close as possible to the capacity limit it is necessary to determine the code parameters that best fit the channel over which the transmission will be done. The two techniques most commonly used in the literature to optimize LDPC codes are Density Evolution (DE) and EXtrinsic Information Transfer (EXIT) charts, which have been employed to obtain optimized codes that perform at a few tenths of a decibel of the AWGN channel capacity. However, no optimization techniques have been presented for SCLDGM codes, which so far have been designed heuristically and therefore their performance is far from the performance achieved by IRA and LDPC codes. Other of the most important advances that have occurred in recent years is the utilization of multiple antennas at the trasmitter and the receiver, which is known as MIMO (Multiple-Input Multiple-Output) systems. Telatar showed that the channel capacity in these kind of systems scales linearly with the minimum number of transmit and receive antennas, which enables us to achieve spectral efficiencies far greater than with systems with a single transmit and receive antenna (or Single Input Single Output (SISO) systems). This important advantage has attracted a lot of attention from the research community, and has caused that many of the new standards, such as WiMax 802.16e or WiFi 802.11n, as well as future 4G systems are based on MIMO systems. The main problem of MIMO systems is the high complexity of optimum detection, which grows exponentially with the number of transmit antennas and the number of modulation levels. Several suboptimum algorithms have been proposed to reduce this complexity, most notably the SIC-MMSE (Soft-Interference Cancellation Minimum Mean Square Error) and spherical detectors. Another major issue is the high complexity of the channel estimation, due to the large number of coefficients which determine it. There are techniques, such as Maximum-Likelihood-Expectation-Maximization (ML-EM), that have been successfully applied to estimate MIMO channels but, as in the case of detection, they suffer from the problem of a very high complexity when the number of transmit antennas or the size of the constellation increase. The main objective of this work is the study and optimization of SCLDGM codes in SISO and MIMO channels. To this end, we propose an optimization method for SCLDGM codes based on EXIT charts that allow these codes to exceed the performance of IRA codes existing in the literature and get close to the performance of LDPC codes, with the advantage over the latter of a lower encoding complexity. We also propose optimized SCLDGM codes for both spherical and SIC-MMSE suboptimal MIMO detectors, constituting a system that is capable of approaching the capacity limits of MIMO channels with a low complexity encoding, detection and decoding. We analyze the BICM (Bit-Interleaved Coded Modulation) scheme and the concatenation of SCLDGM codes with Space-Time Codes (STC) in ergodic and quasi-static MIMO channels. Furthermore, we explore the combination of these codes with different channel estimation algorithms that will take advantage of the low complexity of the suboptimum detectors to reduce the complexity of the estimation process while keeping a low distance to the capacity limit. Finally, we propose coding schemes for low rates involving the serial concatenation of several LDGM codes, reducing the complexity of recently proposed schemes based on Hadamard codes

    Wireless multiuser communication systems: diversity receiver performance analysis, GSMuD design, and fading channel simulator

    Get PDF
    Multipath fading phenomenon is central to the design and analysis of wireless communication systems including multiuser systems. If untreated, the fading will corrupt the transmitted signal and often cause performance degradations such as increased communication error and decreased data rate, as compared to wireline channels with little or no multipath fading. On the other hand, this multipath fading phenomenon, if fully utilized, can actually lead to system designs that provide additional gains in system performance as compared to systems that experience non-fading channels.;The central question this thesis tries to answer is how to design and analyze a wireless multiuser system that takes advantage of the benefits the diversity multipath fading channel provides. Two particular techniques are discussed and analyzed in the first part of the thesis: quadrature amplitude modulation (QAM) and diversity receivers, including maximal ratio combining (MRC) and generalized selection combining (GSC). We consider the practical case of imperfect channel estimation (ICE) and develop a new decision variable (DV) of MRC receiver output for M-QAM. By deriving its moment generating function (MGF), we obtain the exact bit error rate (BER) performance under arbitrary correlated Rayleigh and Rician channels, with ICE. GSC provides a tradeoff between receiver complexity and performance. We study the effect of ICE on the GSC output effective SNR under generalized fading channels and obtain the exact BER results for M-QAM systems. The significance of this part lies in that these results provide system designers means to evaluate how different practical channel estimators and their parameters can affect the system\u27s performance and help them distribute system resources that can most effectively improve performance.;In the second part of the thesis, we look at a new diversity technique unique to multiuser systems under multipath fading channels: the multiuser diversity. We devise a generalized selection multiuser diversity (GSMuD) scheme for the practical CDMA downlink systems, where users are selected for transmission based on their respective channel qualities. We include the effect of ICE in the design and analysis of GSMuD. Based on the marginal distribution of the ranked user signal-noise ratios (SNRs), we develop a practical adaptive modulation and coding (AMC) scheme and equal power allocation scheme and statistical optimal 1-D and 2-D power allocation schemes, to fully exploit the available multiuser diversity. We use the convex optimization procedures to obtain the 1-D and 2-D power allocation algorithms, which distribute the total system power in the waterfilling fashion alone the user (1-D) or both user and time (2-D) for the power-limited and energy-limited system respectively. We also propose a normalized SNR based GSMuD scheme where user access fairness issues are explicitly addressed. We address various fairness-related performance metrics such as the user\u27s average access probability (AAP), average access time (AAT), and average wait time (AWT) in the absolute- and normalized-SNR based GSMuD. These metrics are useful for system designers to determine parameters such as optimal packet size and delay constraints.;We observe that Nakakagami-m fading channel model is widely applied to model the real world multipath fading channels of different severity. In the last part of the thesis, we propose a Nakagami-m channel simulator that can generate accurate channel coefficients that follow the Nakagami-m model, with independent quadrature parts, accurate phase distribution and arbitrary auto-correlation property. We demonstrate that the proposed simulator can be extremely useful in simulations involving Nakagami-m fading channel models, evident from the numerous simulation results obtained in earlier parts of the thesis where the fading channel coefficients are generated using this proposed simulator

    Compute-and-Forward Relay Networks with Asynchronous, Mobile, and Delay-Sensitive Users

    Get PDF
    We consider a wireless network consisting of multiple source nodes, a set of relays and a destination node. Suppose the sources transmit their messages simultaneously to the relays and the destination aims to decode all the messages. At the physical layer, a conventional approach would be for the relay to decode the individual message one at a time while treating rest of the messages as interference. Compute-and-forward is a novel strategy which attempts to turn the situation around by treating the interference as a constructive phenomenon. In compute-and-forward, each relay attempts to directly compute a combination of the transmitted messages and then forwards it to the destination. Upon receiving the combinations of messages from the relays, the destination can recover all the messages by solving the received equations. When identical lattice codes are employed at the sources, error correction to integer combination of messages is a viable option by exploiting the algebraic structure of lattice codes. Therefore, compute-and-forward with lattice codes enables the relay to manage interference and perform error correction concurrently. It is shown that compute-and-forward exhibits substantial improvement in the achievable rate compared with other state-of-the-art schemes for medium to high signal-to-noise ratio regime. Despite several results that show the excellent performance of compute-and-forward, there are still important challenges to overcome before we can utilize compute-and- forward in practice. Some important challenges include the assumptions of \perfect timing synchronization "and \quasi-static fading", since these assumptions rarely hold in realistic wireless channels. So far, there are no conclusive answers to whether compute-and-forward can still provide substantial gains even when these assumptions are removed. When lattice codewords are misaligned and mixed up, decoding integer combination of messages is not straightforward since the linearity of lattice codes is generally not invariant to time shift. When channel exhibits time selectivity, it brings challenges to compute-and-forward since the linearity of lattice codes does not suit the time varying nature of the channel. Another challenge comes from the emerging technologies for future 5G communication, e.g., autonomous driving and virtual reality, where low-latency communication with high reliability is necessary. In this regard, powerful short channel codes with reasonable encoding/decoding complexity are indispensable. Although there are fruitful results on designing short channel codes for point-to-point communication, studies on short code design specifically for compute-and-forward are rarely found. The objective of this dissertation is threefold. First, we study compute-and-forward with timing-asynchronous users. Second, we consider the problem of compute-and- forward over block-fading channels. Finally, the problem of compute-and-forward for low-latency communication is studied. Throughout the dissertation, the research methods and proposed remedies will center around the design of lattice codes in order to facilitate the use of compute-and-forward in the presence of these challenges

    Real-time FPGA Implementation of a Digital Self-interference Canceller in an Inband Full-duplex Transceiver

    Get PDF
    Full-duplex is a communications engineering scheme that allows a single device to transmit and receive at the same time, using the same frequency for both tasks. Compared to traditionally used half-duplex, where the transmission and reception is divided temporally or spectrally, the spectral efficiency may theoretically be doubled in full-duplex operation. However, the technology suffers from a profound problem, namely the self-interference (SI) signal, which is the name given to the signal a node transmits and simultaneously also receives. Making the full-duplex technology feasible demands that the SI signal is mitigated with SI cancellers. Such cancellers reconstruct an estimate of the SI signal and subtract the estimate from the received signal, thus suppressing the SI. For the SI signal to be diminished as much as possible, canceller solutions should be deployed in both analog and digital domains. This thesis presents a digital real-time implementation of a novel nonlinear self-interference canceller, based on splines interpolation. This canceller utilizes a Hammerstein model to identify the SI signal, taking advantage of a FIR filter for the identification of the SI channel, and splines interpolation to model the nonlinear effects of the transceiver circuitry. The new canceller solution promises great reduction in computational complexity compared to traditional algorithms with little to no sacrifice in cancellation performance. The algorithm was implemented for a National Instruments USRP SDR device using LabVIEW Communications System Design Suite 2.0. The LabVIEW program provides the required connectivity to the USRP platform, as the SDR lacks a user interface. In addition, the functionality of the SDR is determined in LabVIEW, by creating code that is then run on the USRP, or more specifically, on the built-in FPGA of the device. The FPGA is where the SI canceller is executed, in order to ensure real-time operation. Even though the USRP device employs a high-end FPGA with plenty of resources, the canceller implementation needs to be simplified nonetheless, for example by approximating magnitudes of complex values and by decreasing the sample rate of the canceller. With the simplifications, the implementation utilizes only 34.9 % of available slices on the FPGA and only 34.6 % of the DSP units. Measurements with the canceller show that it is capable of SI cancellation of up to 48 dB, which is on par with state-of-the-art real-time SI cancellations in literature. Furthermore, it was demonstrated that the canceller is capable of bidirectional communication in various circumstances

    Satellite Communications

    Get PDF
    This study is motivated by the need to give the reader a broad view of the developments, key concepts, and technologies related to information society evolution, with a focus on the wireless communications and geoinformation technologies and their role in the environment. Giving perspective, it aims at assisting people active in the industry, the public sector, and Earth science fields as well, by providing a base for their continued work and thinking

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore