420,042 research outputs found

    OptEEmAL: Decision-Support Tool for the Design of Energy Retrofitting Projects at District Level

    Get PDF
    Designing energy retrofitting actions poses an elevated number of problems, as the definition of the baseline, selection of indicators to measure performance, modelling, setting objectives, etc. This is time-consuming and it can result in a number of inaccuracies, leading to inadequate decisions. While these problems are present at building level, they are multiplied at district level, where there are complex interactions to analyse, simulate and improve. OptEEmAL proposes a solution as a decision-support tool for the design of energy retrofitting projects at district level. Based on specific input data (IFC(s), CityGML, etc.), the platform will automatically simulate the baseline scenario and launch an optimisation process where a series of Energy Conservation Measures (ECMs) will be applied to this scenario. Its performance will be evaluated through a holistic set of indicators to obtain the best combination of ECMs that complies with user's objectives. A great reduction in time and higher accuracy in the models are experienced, since they are automatically created and checked. A subjective problem is transformed into a mathematical problem; it simplifies it and ensures a more robust decision-making. This paper will present a case where the platform has been tested.This research work has been partially funded by the European Commission though the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 680676. All related information to the project is available at https://www.opteemal-project.eu

    Development of a decision support system through modelling of critical infrastructure interdependencies : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Emergency Management at Massey University, Wellington, New Zealand

    Get PDF
    Critical Infrastructure (CI) networks provide functional services to support the wellbeing of a community. Although it is possible to obtain detailed information about individual CI and their components, the interdependencies between different CI networks are often implicit, hidden or not well understood by experts. In the event of a hazard, failures of one or more CI networks and their components can disrupt the functionality and consequently affect the supply of services. Understanding the extent of disruption and quantification of the resulting consequences is important to assist various stakeholders' decision-making processes to complete their tasks successfully. A comprehensive review of the literature shows that a Decision Support System (DSS) integrated with appropriate modelling and simulation techniques is a useful tool for CI network providers and relevant emergency management personnel to understand the network recovery process of a region following a hazard event. However, the majority of existing DSSs focus on risk assessment or stakeholders' involvement without addressing the overall CI interdependency modelling process. Furthermore, these DSSs are primarily developed for data visualization or CI representation but not specifically to help decision-makers by providing them with a variety of customizable decision options that are practically viable. To address these limitations, a Knowledge-centred Decision Support System (KCDSS) has been developed in this study with the following aims: 1) To develop a computer-based DSS using efficient CI network recovery modelling algorithms, 2) To create a knowledge-base of various recovery options relevant to specific CI damage scenarios so that the decision-makers can test and verify several ‘what-if’ scenarios using a variety of control variables, and 3) To bridge the gap between hazard and socio-economic modelling tools through a multidisciplinary and integrated natural hazard impact assessment. Driven by the design science research strategy, this study proposes an integrated impact assessment framework using an iterative design process as its first research outcome. This framework has been developed as a conceptual artefact using a topology network-based approach by adopting the shortest path tree method. The second research outcome, a computer-based KCDSS, provides a convenient and efficient platform for enhanced decision making through a knowledge-base consisting of real-life recovery strategies. These strategies have been identified from the respective decision-makers of the CI network providers through the Critical Decision Method (CDM), a Cognitive Task Analysis (CTA) method for requirement elicitation. The capabilities of the KCDSS are demonstrated through electricity, potable water, and road networks in the Wellington region of Aotearoa New Zealand. The network performance has been analysed independently and with interdependencies to generate outage of services spatially and temporally. The outcomes of this study provide a range of theoretical and practical contributions. Firstly, the topology network-based analysis of CI interdependencies will allow a group of users to build different models, make and test assumptions, and try out different damage scenarios for CI network components. Secondly, the step-by-step process of knowledge elicitation, knowledge representation and knowledge modelling of CI network recovery tasks will provide a guideline for improved interactions between researchers and decision-makers in this field. Thirdly, the KCDSS can be used to test the variations in outage and restoration time estimates of CI networks due to the potential uncertainty related to the damage modelling of CI network components. The outcomes of this study also have significant practical implications by utilizing the KCDSS as an interface to integrate and add additional capabilities to the hazard and socio-economic modelling tools. Finally, the variety of ‘what-if’ scenarios embedded in the KCDSS would allow the CI network providers to identify vulnerabilities in their networks and to examine various post-disaster recovery options for CI reinstatement projects

    Advanced Techniques for Assets Maintenance Management

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThe aim of this paper is to remark the importance of new and advanced techniques supporting decision making in different business processes for maintenance and assets management, as well as the basic need of adopting a certain management framework with a clear processes map and the corresponding IT supporting systems. Framework processes and systems will be the key fundamental enablers for success and for continuous improvement. The suggested framework will help to define and improve business policies and work procedures for the assets operation and maintenance along their life cycle. The following sections present some achievements on this focus, proposing finally possible future lines for a research agenda within this field of assets management

    Visualised inspection system for monitoring environmental anomalies during daily operation and maintenance

    Get PDF
    PurposeVisual inspection and human judgement form the cornerstone of daily operations and maintenance (O&M) services activities carried out by facility managers nowadays. Recent advances in technologies such as building information modelling (BIM), distributed sensor networks, augmented reality (AR) technologies and digital twins present an immense opportunity to radically improve the way daily O&M is conducted. This paper aims to describe the development of an AR-supported automated environmental anomaly detection and fault isolation method to assist facility managers in addressing problems that affect building occupants’ thermal comfort.Design/methodology/approachThe developed system focusses on the detection of environmental anomalies related to the thermal comfort of occupants within a building. The performance of three anomaly detection algorithms in terms of their ability to detect indoor temperature anomalies is compared. Based on the fault tree analysis (FTA), a decision-making tree is developed to assist facility management (FM) professionals in identifying corresponding failed assets according to the detected anomalous symptoms. The AR system facilitates easy maintenance by highlighting the failed assets hidden behind walls/ceilings on site to the maintenance personnel. The system can thus provide enhanced support to facility managers in their daily O&M activities such as inspection, recording, communication and verification.FindingsTaking the indoor temperature inspection as an example, the case study demonstrates that the O&M management process can be improved using the proposed AR-enhanced inspection system. Comparative analysis of different anomaly detection algorithms reveals that the binary segmentation-based change point detection is effective and efficient in identifying temperature anomalies. The decision-making tree supported by FTA helps formalise the linkage between temperature issues and the corresponding failed assets. Finally, the AR-based model enhanced the maintenance process by visualising and highlighting the hidden failed assets to the maintenance personnel on site.Originality/valueThe originality lies in bringing together the advances in augmented reality, digital twins and data-driven decision-making to support the daily O&M management activities. In particular, the paper presents a novel binary segmentation-based change point detection for identifying temperature anomalous symptoms, a decision-making tree for matching the symptoms to the failed assets, and an AR system for visualising those assets with related information.EPSRC, Innovate U

    Decision-focussed resource modelling for design decision support

    Get PDF
    Resource management including resource allocation, levelling, configuration and monitoring has been recognised as critical to design decision making. It has received increasing research interests in recent years. Different definitions, models and systems have been developed and published in literature. One common issue with existing research is that the resource modelling has focussed on the information view of resources. A few acknowledged the importance of resource capability to design management, but none has addressed the evaluation analysis of resource fitness to effectively support design decisions. This paper proposes a decision-focused resource model framework that addresses the combination of resource evaluation with resource information from multiple perspectives. A resource management system constructed on the resource model framework can provide functions for design engineers to efficiently search and retrieve the best fit resources (based on the evaluation results) to meet decision requirements. Thus, the system has the potential to provide improved decision making performance compared with existing resource management systems

    Evaluation and calibration of the CroBas-PipeQual model for Jack Pine (Pinus banksiana Lamb.) using Bayesian melding : hybridization of a process-based forest growth model with empirical yield curves

    Get PDF
    CroBas-PipeQual a Ă©tĂ© Ă©laborĂ© pour Ă©tudier les effets de croissance des arbres sur la qualitĂ© du bois. Ainsi, il s’agit d’un modĂšle d’intĂ©rĂȘt pour maximiser la valeur des produits extraits des forĂȘts. Nous avons Ă©valuĂ© qualitativement une version de CroBas-PipeQual calibrĂ©e pour le pin gris (Pinus banksiana Lamb.) de façon Ă  vĂ©rifier l’intĂ©rĂȘt de l’utiliser comme outil de planification forestiĂšre. Par la suite, nous avons fait une analyse de sensibilitĂ© et une calibration bayesienne Ă  partir d’une table de production utilisĂ©e au QuĂ©bec. Les principales conclusions sont: 1. Les prĂ©dictions de hauteur sont les plus sensibles aux intrants et aux paramĂštres liĂ©s Ă  la photosynthĂšse; 2. La performance de CroBas est amĂ©liorĂ©e en tenant compte de la relation observĂ©e entre deux paramĂštres utilisĂ©s pour estimer la productivitĂ© nette et l'indice de qualitĂ© de station; et 3. CroBas requiert d’autres amĂ©liorations avant de pouvoir ĂȘtre utilisĂ© comme outil de planification.CroBas-PipeQual is a process-based forest growth model designed to study foliage development and how growth processes relate to changes in wood quality. As such, CroBas-PipeQual is of interest as a component model in a forest level decision support model for value assessment. In this thesis, the version of CroBas-PipeQual calibrated for jack pine (Pinus banksiana Lamb.) in QuĂ©bec, Canada was qualitatively evaluated for use in forest management decision-making. Then, sensitivity analyses and Bayesian melding were used to create and calibrate a stand-level version of CroBas-PipeQual to local empirical height yield models in a hybrid-modelling approach. Key findings included: 1. Height predictions were most sensitive to input values and to parameters related to net photosynthesis; 2. Model performance was improved by varying two net-productivity parameters with site quality; and 3. Model performance needs further improvement before CroBas-PipeQual can be used as a component of a forest-management decision tool

    The efficacy of using data mining techniques in predicting academic performance of architecture students.

    Get PDF
    In recent years, there has been a tremendous increase in the number of applicants seeking placement in the undergraduate architecture programme. It is important to identify new intakes who possess the capability to succeed during the selection phase of admission at universities. Admission variable (i.e. prior academic achievement) is one of the most important criteria considered during selection process. The present study investigates the efficacy of using data mining techniques to predict academic performance of architecture student based on information contained in prior academic achievement. The input variables, i.e. prior academic achievement, were extracted from students' academic records. Logistic regression and support vector machine (SVM) are the data mining techniques adopted in this study. The collected data was divided into two parts. The first part was used for training the model, while the other part was used to evaluate the predictive accuracy of the developed models. The results revealed that SVM model outperformed the logistic regression model in terms of accuracy. Taken together, it is evident that prior academic achievement are good predictors of academic performance of architecture students. Although the factors affecting academic performance of students are numerous, the present study focuses on the effect of prior academic achievement on academic performance of architecture students. The developed SVM model can be used a decision-making tool for selecting new intakes into the architecture program at Nigerian universities

    The integrated use of enterprise and system dynamics modelling techniques in support of business decisions

    Get PDF
    Enterprise modelling techniques support business process re-engineering by capturing existing processes and based on perceived outputs, support the design of future process models capable of meeting enterprise requirements. System dynamics modelling tools on the other hand are used extensively for policy analysis and modelling aspects of dynamics which impact on businesses. In this paper, the use of enterprise and system dynamics modelling techniques has been integrated to facilitate qualitative and quantitative reasoning about the structures and behaviours of processes and resource systems used by a Manufacturing Enterprise during the production of composite bearings. The case study testing reported has led to the specification of a new modelling methodology for analysing and managing dynamics and complexities in production systems. This methodology is based on a systematic transformation process, which synergises the use of a selection of public domain enterprise modelling, causal loop and continuous simulationmodelling techniques. The success of the modelling process defined relies on the creation of useful CIMOSA process models which are then converted to causal loops. The causal loop models are then structured and translated to equivalent dynamic simulation models using the proprietary continuous simulation modelling tool iThink

    Performance prediction tools for low impact building design

    Get PDF
    IT systems are emerging that may be used to support decisions relating to the design of a built enviroment that has low impact in terms of energy use and environmental emissions. This paper summarises this prospect in relation to four complementary application areas: digital cities, rational planning, virtual design and Internet energy services
    • 

    corecore