743 research outputs found

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Successive-relaying-aided decode-and-forward coherent versus noncoherent cooperative multicarrier space–time shift keying

    No full text
    Abstract—Successive-relaying-aided (SR) cooperative multi-carrier (MC) space–time shift keying (STSK) is proposed for frequency-selective channels. We invoke SR to mitigate the typical 50% throughput loss of conventional half-duplex relaying schemes and MC code-division multiple access (MC-CDMA) to circumvent the dispersive effects of wireless channels and to reduce the SR-induced interference. The distributed relay terminals form two virtual antenna arrays (VAAs), and the source node (SN) successively transmits frequency-domain (FD) spread signals to one of the VAAs, in addition to directly transmitting to the destination node (DN). The constituent relay nodes (RNs) of each VAA activate cyclic-redundancy-checking-based (CRC) selective decode-and-forward (DF) relaying. The DN can jointly detect the signals received via the SN-to-DN and VAA-to-DN links using a low-complexity single-stream-based joint maximum-likelihood (ML) detector. We also propose a differentially encoded cooperative MC-CDMA STSK scheme to facilitate communications over hostile dispersive channels without requiring channel estimation (CE). Dispensing with CE is important since the relays cannot be expected to altruistically estimate the SN-to-RN links for simply supporting the source. Furthermore, we propose soft-decision-aided serially concatenated recursive systematic convolutional (RSC) and unity-rate-coded (URC) cooperative MC STSK and investigate its performance in both coherent and noncoherent scenarios

    Successive-relaying-aided decode-and-forward coherent versus noncoherent cooperative multicarrier space–time shift keying

    No full text
    Abstract—Successive-relaying-aided (SR) cooperative multi-carrier (MC) space–time shift keying (STSK) is proposed for frequency-selective channels. We invoke SR to mitigate the typical 50% throughput loss of conventional half-duplex relaying schemes and MC code-division multiple access (MC-CDMA) to circumvent the dispersive effects of wireless channels and to reduce the SR-induced interference. The distributed relay terminals form two virtual antenna arrays (VAAs), and the source node (SN) successively transmits frequency-domain (FD) spread signals to one of the VAAs, in addition to directly transmitting to the destination node (DN). The constituent relay nodes (RNs) of each VAA activate cyclic-redundancy-checking-based (CRC) selective decode-and-forward (DF) relaying. The DN can jointly detect the signals received via the SN-to-DN and VAA-to-DN links using a low-complexity single-stream-based joint maximum-likelihood (ML) detector. We also propose a differentially encoded cooperative MC-CDMA STSK scheme to facilitate communications over hostile dispersive channels without requiring channel estimation (CE). Dispensing with CE is important since the relays cannot be expected to altruistically estimate the SN-to-RN links for simply supporting the source. Furthermore, we propose soft-decision-aided serially concatenated recursive systematic convolutional (RSC) and unity-rate-coded (URC) cooperative MC STSK and investigate its performance in both coherent and noncoherent scenarios

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Enhanced Wireless Access Technologies and Experiments for W-CDMA Communications

    Get PDF
    This article reviews enhanced wireless access technologies and experimental evaluations of the wideband DS-CDMA physical layer employing intercell asynchronous operation with a three-step fast cell search method, pilot symbol-assisted coherent links, signal-to-interference plus background noise power ratio-based fast transmit power control, site diversity (soft/softer handover), and transmit diversity in the forward link. The article also presents link-capacity-enhancing techniques such as using an interference canceller and adaptive antenna array diversity receiver/transmitter, and experimental results in a real multipath fading channel. The laboratory and field experiments exemplify superior techniques of the W-CDMA physical layer and the potential of the IC and AAAD transceiver to decrease the mobile transmit power in the reverse link and multipath interference from high-rate users with large transmit power in the forward link

    Distributed Self-Concatenated Coding for Cooperative Communication

    No full text
    In this paper, we propose a power-efficient distributed binary self-concatenated coding scheme using iterative decoding (DSECCC-ID) for cooperative communications. The DSECCC-ID scheme is designed with the aid of binary extrinsic information transfer (EXIT) charts. The source node transmits self-concatenated convolutional coded (SECCC) symbols to both the relay and destination nodes during the first transmission period. The relay performs SECCC-ID decoding, where it mayor may not encounter decoding errors. It then reencodes the information bits using a recursive systematic convolutional (RSC) code during the second transmission period. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel concatenated encoder. At the destination node, three-component DSECCC-ID decoding is performed. The EXIT chart gives us an insight into operation of the distributed coding scheme, which enables us to significantly reduce the transmit power by about 3.3 dB in signal-to-noise ratio (SNR) terms, as compared with a noncooperative SECCC-ID scheme at a bit error rate (BER) of 10-5. Finally, the proposed system is capable of performing within about 1.5 dB from the two-hop relay-aided network’s capacity at a BER of 10-5 , even if there may be decoding errors at the relay

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature
    corecore