6 research outputs found

    Gaussian states and geometrically uniform symmetry

    Full text link
    Quantum Gaussian states can be considered as the majority of the practical quantum states used in quantum communications and more generally in quantum information. Here we consider their properties in relation with the geometrically uniform symmetry, a property of quantum states that greatly simplifies the derivation of the optimal decision by means of the square root measurements. In a general framework of the NN-mode Gaussian states we show the general properties of this symmetry and the application of the optimal quantum measurements. An application example is presented, to quantum communication systems employing pulse position modulation. We prove that the geometrically uniform symmetry can be applied to the general class of multimode Gaussian states

    Theory of Quantum Pulse Position Modulation and Related Numerical Problems

    Full text link
    The paper deals with quantum pulse position modulation (PPM), both in the absence (pure states) and in the presence (mixed states) of thermal noise, using the Glauber representation of coherent laser radiation. The objective is to find optimal (or suboptimal) measurement operators and to evaluate the corresponding error probability. For PPM, the correct formulation of quantum states is given by the tensorial product of m identical Hilbert spaces, where m is the PPM order. The presence of mixed states, due to thermal noise, generates an optimization problem involving matrices of huge dimensions, which already for 4-PPM, are of the order of ten thousand. To overcome this computational complexity, the currently available methods of quantum detection, which are based on explicit results, convex linear programming and square root measurement, are compared to find the computationally less expensive one. In this paper a fundamental role is played by the geometrically uniform symmetry of the quantum PPM format. The evaluation of error probability confirms the vast superiority of the quantum detection over its classical counterpart.Comment: 10 pages, 7 figures, accepted for publication in IEEE Trans. on Communication

    Performance of quantum data transmission systems in the presence of thermal noise

    No full text
    corecore