1,942 research outputs found

    Ultra Wideband Preliminaries

    Get PDF
    Non

    Ultra-wideband indoor communications using optical technology

    Get PDF
    La communication ultra large bande (UWB) a attirĂ© une Ă©norme quantitĂ© de recherches ces derniĂšres annĂ©es, surtout aprĂšs la prĂ©sentation du masque spectral de US Federal Communications Commission (FCC). Les impulsions ultra-courtes permettent de trĂšs hauts dĂ©bits de faible puissance tout en Ă©liminant les interfĂ©rences avec les systĂšmes existants Ă  bande Ă©troite. La faible puissance, cependant, limite la portĂ©e de propagation des radios UWB Ă  quelques mĂštres pour la transmission sans fil Ă  l’intĂ©rieur d’une piĂšce. En outre, des signaux UWB reçu sont Ă©tendus dans le temps en raison de la propagation par trajet multiple qui rĂ©sulte en beaucoup d’interfĂ©rence inter-symbole (ISI) Ă  haut dĂ©bit. Le monocycle Gaussien, l’impulsion la plus commune dans UWB, a une mauvaise couverture sous le masque de la FCC. Dans cette thĂšse, nous dĂ©montrons des transmet- teurs qui sont capables de gĂ©nĂ©rer des impulsions UWB avec une efficacitĂ© de puissance Ă©levĂ©e. Une impulsion efficace rĂ©sulte dans un rapport de signal Ă  bruit (SNR) supĂ©rieur au rĂ©cepteur en utilisant plus de la puissance disponible sous le masque spectral de la FCC. On produit les impulsions dans le domaine optique et utilise la fibre optique pour les transporter sur plusieurs kilomĂštres pour la distribution dans un rĂ©seau optique pas- sif. La fibre optique est trĂšs fiable pour le transport des signaux radio avec une faible consommation de puissance. On utilise les Ă©lĂ©ments simples comme un modulateur Mach-Zehnder ou un rĂ©sonateur en anneau pour gĂ©nĂ©rer des impulsions, ce qui permet l’intĂ©gration dans le silicium. Compatible avec la technologie CMOS, la photonique sur silicium a un potentiel Ă©norme pour abaisser le coĂ»t et l’encombrement des systĂšmes optiques. La photodĂ©tection convertit les impulsions optiques en impulsions Ă©lectriques avant la transmission sur l’antenne du cĂŽtĂ© de l’utilisateur. La rĂ©ponse frĂ©quentielle de l’antenne dĂ©forme la forme d’onde de l’impulsion UWB. Nous proposons une technique d’optimisation non-linĂ©aire qui prend en compte la distorsion d’antenne pour trouver des impulsions qui maximisent la puissance transmise, en respectant le masque spectral de la FCC. Nous travaillons avec trois antennes et concevons une impulsion unique pour chacune d’entre elle. L’amĂ©lioration de l’énergie des impulsions UWB amĂ©liore directement la SNR au rĂ©cepteur. Les rĂ©sultats de simulation montrent que les impulsions optimisĂ©es amĂ©liorent considĂ©rablement le taux d’erreur (BER) par rapport au monocycle Gaussien sous propagation par trajet multiple. Notre autre contribution est l’évaluation d’un filtre adaptĂ© pour recevoir efficacement des impulsions UWB. Le filtre adaptĂ© est synthĂ©tisĂ© et fabriquĂ© en technologie microstrip, en collaboration avec l’UniversitĂ© McGill comme un dispositif de bande interdite Ă©lectromagnĂ©tique. La rĂ©ponse frĂ©quentielle du filtre adaptĂ© montre une ex- cellente concordance avec le spectre ciblĂ© de l’impulsion UWB. Les mesures de BER confirment la performance supĂ©rieure du filtre adaptĂ© par rapport Ă  un rĂ©cepteur Ă  conversion directe. Le canal UWB est trĂšs riche en trajet multiple conduisant Ă  l’ISI Ă  haut dĂ©bit. Notre derniĂšre contribution est l’étude de performance des rĂ©cepteurs en simulant un systĂšme avec des conditions de canaux rĂ©alistes. Les rĂ©sultats de la simulation montrent que la performance d’un tel systĂšme se dĂ©grade de façon significative pour les hauts dĂ©bits. Afin de compenser la forte ISI dans les taux de transfert de donnĂ©es en Gb/s, nous Ă©tudions l’algorithme de Viterbi (VA) avec un nombre limitĂ© d’états et un Ă©galiseur DFE (decision feedback equalizer). Nous examinons le nombre d’états requis dans le VA, et le nombre de coefficients du filtre dans le DFE pour une transmission fiable de UWB en Gb/s dans les canaux en ligne de vue. L’évaluation par simulation de BER confirme que l’égalisation amĂ©liore considĂ©rablement les performances par rapport Ă  la dĂ©tection de symbole. La DFE a une meilleure performance par rapport Ă  la VA en utilisant une complexitĂ© comparable. La DFE peut couvrir une plus grande mĂ©moire de canal avec un niveau de complexitĂ© relativement rĂ©duit.Ultra-wideband (UWB) communication has attracted an enormous amount of research in recent years, especially after the introduction of the US Federal Communications Commission (FCC) spectral mask. Ultra-short pulses allow for very high bit-rates while low power eliminates interference with existing narrowband systems. Low power, however, limits the propagation range of UWB radios to a few meters for indoors wireless transmission. Furthermore, received UWB signals are spread in time because of multipath propagation which results in high intersymbol interference at high data rates. Gaussian monocycle, the most commonly employed UWB pulse, has poor coverage under the FCC mask. In this thesis we demonstrate transmitters capable of generating UWB pulses with high power efficiency at Gb/s bit-rates. An efficient pulse results in higher signal-to-noise ratio (SNR) at the receiver by utilizing most of the available power under the FCC spectral mask. We generate the pulses in the optical domain and use optical fiber to transport the pulses over several kilometers for distribution in a passive optical network. Optical fiber is very reliable for transporting radio signals with low power consumption. We use simple elements such as a Mach Zehnder modulator or a ring resonator for pulse shaping, allowing for integration in silicon. Being compatible with CMOS technology, silicon photonics has huge potential for lowering the cost and bulkiness of optical systems. Photodetection converts the pulses to the electrical domain before antenna transmission at the user side. The frequency response of UWB antennas distorts the UWB waveforms. We pro- pose a nonlinear optimization technique which takes into account antenna distortion to find pulses that maximize the transmitted power, while respecting the FCC spectral mask. We consider three antennas and design a unique pulse for each. The energy improvement in UWB pulses directly improves the receiver SNR. Simulation results show that optimized pulses have a significant bit error rate (BER) performance improvement compared to the Gaussian monocycle under multipath propagation. Our other contribution is evaluating a matched filter to receive efficiently designed UWB pulses. The matched filter is synthesized and fabricated in microstrip technology in collaboration with McGill University as an electromagnetic bandgap device. The frequency response of the matched filter shows close agreement with the target UWB pulse spectrum. BER measurements confirm superior performance of the matched filter compared to a direct conversion receiver. The UWB channel is very rich in multipath leading to ISI at high bit rates. Our last contribution is investigating the performance of receivers by simulating a system employing realistic channel conditions. Simulation results show that the performance of such system degrades significantly for high data rates. To compensate the severe ISI at gigabit rates, we investigate the Viterbi algorithm (VA) with a limited number of states and the decision feedback equalizer (DFE). We examine the required number of states in the VA, and the number of taps in the DFE for reliable Gb/s UWB trans- mission for line-of-sight channels. Non-line-of-sight channels were also investigated at lower speeds. BER simulations confirm that equalization considerably improves the performance compared to symbol detection. The DFE results in better performance compared to the VA when using comparable complexity as the DFE can cover greater channel memory with a relatively low complexity level

    Analysis of Ultra Wide Band (UWB) Technology for an Indoor Geolocation and Physiological Monitoring System

    Get PDF
    The goal of this research is to analyze the utility of UWB for indoor geolocation and to evaluate a prototype system, which will send information detailing a person’s position and physiological status to a command center. In a real world environment, geolocation and physiological status information needs to be sent to a command and control center that may be located several miles away from the operational environment. This research analyzes and characterizes the UWB signal in the various operational environments associated with indoor geolocation. Additionally, typical usage scenarios for the interaction between UWB and other devices are also tested and evaluated

    Radio channel characterisation and system-level modelling for ultra wideband body-centric wireless communications

    Get PDF
    PhDThe next generation of wireless communication is evolving towards user-centric networks, where constant and reliable connectivity and services are essential. Bodycentric wireless network (BCWN) is the most exciting and emerging 4G technology for short (1-5 m) and very short (below 1 m) range communication systems. It has got numerous applications including healthcare, entertainment, surveillance, emergency, sports and military. The major difference between the BCWN and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile medium from the radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio propagation channel parameters and hence the system performance. In addition, fading is another concern that affects the reliability and quality of the wireless link, which needs to be taken into account for a low cost and reliable wireless communication system for body-centric networks. The complex nature of the BCWN requires operating wireless devices to provide low power requirements, less complexity, low cost and compactness in size. Apart from these characteristics, scalable data rates and robust performance in most fading conditions and jamming environment, even at low signal to noise ratio (SNR) is needed. Ultra-wideband (UWB) technology is one of the most promising candidate for BCWN as it tends to fulfill most of these requirements. The thesis focuses on the characterisation of ultra wideband body-centric radio propagation channel using single and multiple antenna techniques. Apart from channel characterisation, system level modelling of potential UWB radio transceivers for body-centric wireless network is also proposed. Channel models with respect to large scale and delay analysis are derived from measured parameters. Results and analyses highlight the consequences of static and dynamic environments in addition to the antenna positions on the performance of body-centric wireless communication channels. Extensive measurement i campaigns are performed to analyse the significance of antenna diversity to combat the channel fading in body-centric wireless networks. Various diversity combining techniques are considered in this process. Measurement data are also used to predict the performance of potential UWB systems in the body-centric wireless networks. The study supports the significance of single and multiple antenna channel characterisation and modelling in producing suitable wireless systems for ultra low power body-centric wireless networks.University of Engineering and Technology Lahore Pakista

    High-performance wireless interface for implant-to-air communications

    Get PDF
    Nous Ă©laborons une interface cerveau-machine (ICM) entiĂšrement sans fil afin de fournir un systĂšme de liaison directe entre le cerveau et les pĂ©riphĂ©riques externes, permettant l’enregistrement et la stimulation du cerveau pour une utilisation permanente. Au cours de cette thĂšse, nous explorons la modĂ©lisation de canal, les antennes implantĂ©es et portables en tant que propagateurs appropriĂ©s pour cette application, la conception du nouveau systĂšme d’un Ă©metteur-rĂ©cepteur UWB implantable, la conception niveau systĂšme du circuit et sa mise en oeuvre par un procĂ©dĂ© CMOS TSMC 0.18 um. En plus, en collaboration avec UniversitĂ© McGill, nous avons conçu un rĂ©seau de seize antennes pour une dĂ©tection du cancer du sein Ă  l’aide d’hyperfrĂ©quences. Notre premiĂšre contribution calcule la caractĂ©risation de canal de liaison sans fil UWB d’implant Ă  l’air, l’absorption spĂ©cifique moyennĂ©e (ASAR), et les lignes directrices de la FCC sur la densitĂ© spectrale de puissance UWB transmis. La connaissance du comportement du canal est nĂ©cessaire pour dĂ©terminer la puissance maximale permise Ă  1) respecter les lignes directrices ANSI pour Ă©viter des dommages aux tissus et 2) respecter les lignes directrices de la FCC sur les transmissions non autorisĂ©es. Nous avons recours Ă  un modĂšle rĂ©aliste du canal biologique afin de concevoir les antennes pour l’émetteur implantĂ© et le rĂ©cepteur externe. Le placement des antennes est examinĂ© avec deux scĂ©narios contrastĂ©s ayant des contraintĂ©s de puissance. La performance du systĂšme au sein des tissus biologiques est examinĂ©e par l’intermĂ©diaire des simulations et des expĂ©riences. Notre deuxiĂšme contribution est dĂ©diĂ©e Ă  la conception des antennes simples et Ă  double polarisation pour les systĂšmes d’enregistrement neural sans fil Ă  bande ultra-large en utilisant un modĂšle multicouches inhomogĂšne de la tĂȘte humaine. Les antennes fabriquĂ©es Ă  partir de matĂ©riaux flexibles sont plus facilement adaptĂ©es Ă  l’implantation ; nous Ă©tudions des matĂ©riaux Ă  la fois flexibles et rigides et examinons des compromis de performance. Les antennes proposĂ©es sont conçues pour fonctionner dans une plage de frĂ©quence de 2-11 GHz (ayant S11-dessous de -10 dB) couvrant Ă  la fois la bande 2.45 GHz (ISM) et la bande UWB 3.1-10.6 GHz. Des mesures confirment les rĂ©sultats de simulation et montrent que les antennes flexibles ont peu de dĂ©gradation des performances en raison des effets de flexion (en termes de correspondance d’impĂ©dance). Finalement, une comparaison est rĂ©alisĂ©e entre quatre antennes implantables, couvrant la gamme 2-11 GHz : 1) une rigide, Ă  la polarisation simple, 2) une rigide, Ă  double polarisation, 3) une flexible, Ă  simple polarisation et 4) une flexible, Ă  double polarisation. Dans tous les cas une antenne rigide est utilisĂ©e Ă  l’extĂ©rieur du corps, avec une polarisation appropriĂ©e. Plusieurs avantages ont Ă©tĂ© confirmĂ©s pour les antennes Ă  la polarisation double : 1) une taille plus petite, 2) la sensibilitĂ© plus faible aux dĂ©salignements angulaires, et 3) une plus grande fidĂ©litĂ©. Notre troisiĂšme contribution fournit la conception niveau systĂšme de l’architecture de communication sans fil pour les systĂšmes implantĂ©s qui stimulent simultanĂ©ment les neurones et enregistrent les rĂ©ponses de neurones. Cette architecture prend en charge un grand nombre d’électrodes (> 500), fournissant 100 Mb/s pour des signaux de stimulation de liaison descendante, et Gb/s pour les enregistrements de neurones de liaison montante. Nous proposons une architecture d’émetteur-rĂ©cepteur qui partage une antenne ultra large bande, un Ă©metteur-rĂ©cepteur simplifiĂ©, travaillant en duplex intĂ©gral sur les deux bandes, et un nouveau formeur d’impulsions pour la liaison montante du Gb/s soutenant plusieurs formats de modulation. Nous prĂ©sentons une dĂ©monstration expĂ©rimentale d’ex vivo de l’architecture en utilisant des composants discrets pour la rĂ©alisation les taux Gb/s en liaison montante. Une bonne performance de taux d’erreur de bit sur un canal biologique Ă  0,5, 1 et 2 Gb/s des dĂ©bits de donnĂ©es pour la tĂ©lĂ©mĂ©trie de liaison montante (UWB) et 100 Mb/s pour la tĂ©lĂ©mĂ©trie en liaison descendante (bande 2.45 GHz) est atteinte. Notre quatriĂšme contribution prĂ©sente la conception au niveau du circuit d’un dispositif d’émission en duplex total qui est prĂ©sentĂ©e dans notre troisiĂšme contribution. Ce dispositif d’émission en duplex total soutient les applications d’interfaçage neural multimodal et en haute densitĂ© (les canaux de stimulant et d’enregistrement) avec des dĂ©bits de donnĂ©es asymĂ©triques. L’émetteur (TX) et le rĂ©cepteur (RX) partagent une seule antenne pour rĂ©duire la taille de l’implant. Le TX utilise impulse radio ultra-wide band (IR-UWB) basĂ© sur une approche alliant des bords, et le RX utilise un nouveau 2.4 GHz rĂ©cepteur on-off keying (OOK).Une bonne isolation (> 20 dB) entre le trajet TX et RX est mis en oeuvre 1) par mise en forme des impulsions transmises pour tomber dans le spectre UWB non rĂ©glementĂ© (3.1-7 GHz), et 2) par un filtrage espace-efficace du spectre de liaison descendante OOK dans un amplificateur Ă  faible bruit RX. L’émetteur UWB 3.1-7 GHz peut utiliser soit OOK soit la modulation numĂ©rique binaire Ă  dĂ©placement de phase (BPSK). Le FDT proposĂ© offre une double bande avec un taux de donnĂ©es de liaison montante de 500 Mbps TX et un taux de donnĂ©es de liaison descendante de 100 Mb/s RX, et il est entiĂšrement en conformitĂ© avec les standards TSMC 0.18 um CMOS dans un volume total de 0,8 mm2. Ainsi, la mesure de consommation d’énergie totale en mode full duplex est de 10,4 mW (5 mW Ă  100 Mb/s pour RX, et de 5,4 mW Ă  500 Mb/s ou 10,8 PJ / bits pour TX). Notre cinquiĂšme contribution est une collaboration avec l’UniversitĂ© McGill dans laquelle nous concevons des antennes simples et Ă  double polarisation pour les systĂšmes de dĂ©tection du cancer du sein Ă  l’aide d’hyperfrĂ©quences sans fil en utilisant un modĂšle multi-couche et inhomogĂšne du sein humain. Les antennes fabriquĂ©es Ă  partir de matĂ©riaux flexibles sont plus facilement adaptĂ©es Ă  des applications portables. Les antennes flexibles miniaturisĂ©es monopĂŽles et spirales sur un 50 um Kapton polyimide sont conçus, en utilisant high frequency structure simulator (HFSS), Ă  ĂȘtre en contact avec des tissus biologiques du sein. Les antennes proposĂ©es sont conçues pour fonctionner dans une gamme de frĂ©quences de 2 Ă  4 GHz. Les mesures montrent que les antennes flexibles ont une bonne adaptation d’impĂ©dance dans les diffĂ©rentes positions sur le sein. De Plus, deux antennes Ă  bande ultralarge flexibles 4 × 4 (simple et Ă  double polarisation), dans un format similaire Ă  celui d’un soutien-gorge, ont Ă©tĂ© dĂ©veloppĂ©s pour un systĂšme de dĂ©tection du cancer du sein basĂ© sur le radar.We are working on a fully wireless brain-machine-interface to provide a communication link between the brain and external devices, enabling recording and stimulating the brain for permanent usage. In this thesis we explore channel modeling, implanted and wearable antennas as suitable propagators for this application, system level design of an implantable UWB transceiver, and circuit level design and implementing it by TSMC 0.18 um CMOS process. Also, in a collaboration project with McGill University, we designed a flexible sixteen antenna array for microwave breast cancer detection. Our first contribution calculates channel characteristics of implant-to-air UWB wireless link, average specific absorption rate (ASAR), and FCC guidelines on transmitted UWB power spectral density. Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulations and experiments. Our second contribution deals with designing single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2–11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1–10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. Our third contribution provides system level design of wireless communication architecture for implanted systems that simultaneously stimulate neurons and record neural responses. This architecture supports large numbers of electrodes (> 500), providing 100 Mb/s for the downlink of stimulation signals, and Gb/s for the uplink neural recordings. We propose a transceiver architecture that shares one ultra-wideband antenna, a streamlined transceiver working at full-duplex on both bands, and a novel pulse shaper for the Gb/s uplink supporting several modulation formats. We present an ex-vivo experimental demonstration of the architecture using discrete components achieving Gb/s uplink rates. Good bit error rate performance over a biological channel at 0.5, 1, and 2 Gbps data rates for uplink telemetry (UWB) and 100 Mbps for downlink telemetry (2.45 GHz band) is achieved. Our fourth contribution presents circuit level design of the novel full-duplex transceiver (FDT) which is presented in our third contribution. This full-duplex transceiver supports high-density and multimodal neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates. The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by spaceefficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18 um CMOS within a total size of 0.8 mm2. The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Our fifth contribution is a collaboration project with McGill University which we design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multi-layer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50 um Kapton polyimide are designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2–4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching while in different positions with different curvature around the breast. Furthermore, two flexible conformal 4×4 ultra-wideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system

    Ultra-Wideband RF Transceive

    Get PDF

    On an approach to provide space diversity to an ultra wideband time hopping pulse position modulated wireless communication system

    Get PDF
    The hypothesis question, which is addressed in this PhD dissertation, is how to use two transmission antennas in an Ultra Wide Band Time Hopping Pulse Position Modulation system to take advantage of space diversity in such a way as to not significantly degrade the communication link compared to using only one transmit antenna. In answering the hypothesis question, this dissertation proposes a novel technique, based on Space Time Spreading, to allow an Ultra Wideband Time Hopping Pulse Position Modulation system to obtain full advantage from space diversity using two transmit antennas and one receive antenna, showing how such a Multiple Input Multiple Output system is designed. This is achieved with the added advantage of transmitting the same two symbols simultaneously on each antenna link. This means that for the proposed system, should a fade occur on one of the two antenna links, the two symbols transmitted will still be received with a slight increased cost in average Bit Error Rate (BER) performance as Signal to Noise Ratio (SNR) or measured Eb/No is increased. Results are first provided for wideband Space Time Spreading in the presence of Multiple Access Interference when using two, four and eight transmit antennas. A system is developed in simulation using modules provided by MATLABs Simulink program. It is then shown that using low correlation Wysocki spreading code set results in an improved BER performance compared to the more often used Walsh Hadamard spreading code set. A Simulink Ultra Wide Band Pulse Position Modulation Single Input Single Output system is developed and validated against published peer reviewed material. This is then modified to consider the use of Space Time Spreading in a Single Input Single Output system and it is shown that improved performance over an Ultra Wide Band Pulse Position Modulated Single Input Single Output is possible. It is also shown that this improvement allows the transmission of two symbols in the same time that the original system only transmits one symbol. The thesis also investigates a system which uses two transmit antennas but a hard decision is made on a chip by chip basis. Its performance, compared to an equivalent Single Input Single Output comparable system, is suboptimal. It does, however, have the advantage that it sends two symbols in the same time that the equivalent Single Input Single output Ultra Wide Band Pulse Position Modulation system sends one, and its implementation is simpler to codify. Also, it has the feature that both symbols are sent simultaneously on each antenna link. The simulator is then modified to make a hard decision after all chips of a spreading sequence for two antennas are received and it is shown that this system, in simulation and analysis, has a similar performance to that for a comparable Single Input Single Output system with the added advantage that both antenna links send the same two symbols simultaneously. It is further demonstrated in simulation and analysis that such systems can be affected by Multiple Access Interference. In addition, it is shown, using simulation, that the choice of spreading sequence set does have an impact on the average BER performance of the proposed Space Time Spreading Time Hopping Ultra Wideband Pulse Position Modulation system. The thesis finally proposes some extensions using the developed simulator which are outlined in future work
    • 

    corecore