797 research outputs found

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Space-time coding for CDMA-based wireless communication systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2002Includes bibliographical references (leaves: 72-75)Text in English; Abstract: Turkish and Englishx, 75 leavesMultiple transmit antennas giving rise to diversity (transmit diversity) have been shown to increase downlink (base station to the mobile) capacity in cellular systems.The third generation partnership project (3GPP) for WCDMA has chosen space time transmit diversity (STTD) as the open loop transmit diversity technique for two transmit antennas.On the other hand, the CDMA 2000 has chosen space time spreading (STS) and orthogonal transmit diversity (OTD) as the open loop transmit diversity.In addition to all the standardization aspects, proposed contributions such as space time coding assisted double spread rake receiver (STC-DS-RR) are exist.In this thesis, open loop transmit diversity techniques of 3GPP, CDMA 2000 and existing contributions are investigated.Their performances are compared as a means of biterror- rate (BER) versus signal-to-noise ratio (SNR)

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Exact BER Performance of Asynchronous MC-DS-CDMA over Fading Channels

    No full text
    In this contribution an accurate average Bit Error Rate (BER) formula is derived for MC-DS-CDMA in the context of asynchronous transmissions and random spreading sequences. We consider a flat Nakagami-m fading channel for each subcarrier. Our analysis is based on the Characteristic Function (CF) and does not rely on any assumption concerning the statistical behavior of the interference. We develop a new closed-form expression for the conditional CF of the inter-carrier interference and provide a procedure for calculating the exact BER expressed in the form of a single numerical integration. The accuracy of the Standard Gaussian Approximation (SGA) technique is also evaluated. Link-level results confirm the accuracy of the SGA for most practical conditions

    Enhanced Wireless Access Technologies and Experiments for W-CDMA Communications

    Get PDF
    This article reviews enhanced wireless access technologies and experimental evaluations of the wideband DS-CDMA physical layer employing intercell asynchronous operation with a three-step fast cell search method, pilot symbol-assisted coherent links, signal-to-interference plus background noise power ratio-based fast transmit power control, site diversity (soft/softer handover), and transmit diversity in the forward link. The article also presents link-capacity-enhancing techniques such as using an interference canceller and adaptive antenna array diversity receiver/transmitter, and experimental results in a real multipath fading channel. The laboratory and field experiments exemplify superior techniques of the W-CDMA physical layer and the potential of the IC and AAAD transceiver to decrease the mobile transmit power in the reverse link and multipath interference from high-rate users with large transmit power in the forward link
    corecore