5,974 research outputs found

    Data Collection and Capacity Analysis in Large-scale Wireless Sensor Networks

    Get PDF
    In this dissertation, we study data collection and its achievable network capacity in Wireless Sensor Networks (WSNs). Firstly, we investigate the data collection issue in dual-radio multi-channel WSNs under the protocol interference model. We propose a multi-path scheduling algorithm for snapshot data collection, which has a tighter capacity bound than the existing best result, and a novel continuous data collection algorithm with comprehensive capacity analysis. Secondly, considering most existing works for the capacity issue are based on the ideal deterministic network model, we study the data collection problem for practical probabilistic WSNs. We design a cell-based path scheduling algorithm and a zone-based pipeline scheduling algorithm for snapshot and continuous data collection in probabilistic WSNs, respectively. By analysis, we show that the proposed algorithms have competitive capacity performance compared with existing works. Thirdly, most of the existing works studying the data collection capacity issue are for centralized synchronous WSNs. However, wireless networks are more likely to be distributed asynchronous systems. Therefore, we investigate the achievable data collection capacity of realistic distributed asynchronous WSNs and propose a data collection algorithm with fairness consideration. Theoretical analysis of the proposed algorithm shows that its achievable network capacity is order-optimal as centralized and synchronized algorithms do and independent of network size. Finally, for completeness, we study the data aggregation issue for realistic probabilistic WSNs. We propose order-optimal scheduling algorithms for snapshot and continuous data aggregation under the physical interference model

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Distributed Optimization in Energy Harvesting Sensor Networks with Dynamic In-network Data Processing

    Get PDF
    Energy Harvesting Wireless Sensor Networks (EH- WSNs) have been attracting increasing interest in recent years. Most current EH-WSN approaches focus on sensing and net- working algorithm design, and therefore only consider the energy consumed by sensors and wireless transceivers for sensing and data transmissions respectively. In this paper, we incorporate CPU-intensive edge operations that constitute in-network data processing (e.g. data aggregation/fusion/compression) with sens- ing and networking; to jointly optimize their performance, while ensuring sustainable network operation (i.e. no sensor node runs out of energy). Based on realistic energy and network models, we formulate a stochastic optimization problem, and propose a lightweight on-line algorithm, namely Recycling Wasted Energy (RWE), to solve it. Through rigorous theoretical analysis, we prove that RWE achieves asymptotical optimality, bounded data queue size, and sustainable network operation. We implement RWE on a popular IoT operating system, Contiki OS, and eval- uate its performance using both real-world experiments based on the FIT IoT-LAB testbed, and extensive trace-driven simulations using Cooja. The evaluation results verify our theoretical analysis, and demonstrate that RWE can recycle more than 90% wasted energy caused by battery overflow, and achieve around 300% network utility gain in practical EH-WSNs
    • …
    corecore