1 research outputs found

    Performance of a fast frequency-hopped noncoherent MFSK receiver with nonideal adaptive gain control

    Get PDF
    An error probability analysis is performed for an orthogonal noncoherent\M-ary frequency-shift keying (MFSK) communication system employing fast frequency-hopped (FFH) spread spectrum with diversity. The signal is assumed to be transmitted through a frequency-nonselective slowly fading channel with partial-band noise interference. The partial-band interference is modeled as a Gaussian process. Both the information signal and the partial-band noise interference signal are assumed to be affected by channel fading; it is assumed that the two fading processes are independent and that channel fading need not necessarily affect the information signal and the interference signal in the same way. Each diversity reception is assumed to fade independently according to a Rician process. Adaptive gain control is employed to minimize partial-band interference effects, and the effect of inaccurate noise measurement on the ability of the adaptive gain control receiver to reject partial-band interference is examined. The effect of thermal noise is included in the analysis
    corecore