9,730 research outputs found

    An Energy Efficient Decoding Scheme for Wireless Body Area Sensor Networks

    Full text link
    One of the major challenges in Wireless Body Area Networks (WBANs) is to prolong the lifetime of network. Traditional research work focuses on minimizing transmit power; however, in the case of short range communication the consumption power in decoding is significantly larger than transmit power. This paper investigates the minimization of total power consumption by reducing the decoding power consumption. For achieving a desired Bit Error Rate (BER), we introduce some fundamental results on the basis of iterative message-passing algorithms for Low Density Parity Check Code (LDPC). To reduce energy dissipation in decoder, LDPC based coded communications between sensors are considered. Moreover, we evaluate the performance of LDPC at different code rates and introduce Adaptive Iterative Decoding (AID) by exploiting threshold on the number of iterations for a certain BER (0.0004). In iterative LDPC decoding, the total energy consumption of network is reduced by 20 to 25%.Comment: Journal of Basic and Applied Scientific Research. 2013. arXiv admin note: substantial text overlap with arXiv:1309.075

    Ambient Backscatter Communications: A Contemporary Survey

    Full text link
    Recently, ambient backscatter communications has been introduced as a cutting-edge technology which enables smart devices to communicate by utilizing ambient radio frequency (RF) signals without requiring active RF transmission. This technology is especially effective in addressing communication and energy efficiency problems for low-power communications systems such as sensor networks. It is expected to realize numerous Internet-of-Things (IoT) applications. Therefore, this paper aims to provide a contemporary and comprehensive literature review on fundamentals, applications, challenges, and research efforts/progress of ambient backscatter communications. In particular, we first present fundamentals of backscatter communications and briefly review bistatic backscatter communications systems. Then, the general architecture, advantages, and solutions to address existing issues and limitations of ambient backscatter communications systems are discussed. Additionally, emerging applications of ambient backscatter communications are highlighted. Finally, we outline some open issues and future research directions.Comment: 32 pages, 18 figures, journa

    On Green Energy Powered Cognitive Radio Networks

    Full text link
    Green energy powered cognitive radio (CR) network is capable of liberating the wireless access networks from spectral and energy constraints. The limitation of the spectrum is alleviated by exploiting cognitive networking in which wireless nodes sense and utilize the spare spectrum for data communications, while dependence on the traditional unsustainable energy is assuaged by adopting energy harvesting (EH) through which green energy can be harnessed to power wireless networks. Green energy powered CR increases the network availability and thus extends emerging network applications. Designing green CR networks is challenging. It requires not only the optimization of dynamic spectrum access but also the optimal utilization of green energy. This paper surveys the energy efficient cognitive radio techniques and the optimization of green energy powered wireless networks. Existing works on energy aware spectrum sensing, management, and sharing are investigated in detail. The state of the art of the energy efficient CR based wireless access network is discussed in various aspects such as relay and cooperative radio and small cells. Envisioning green energy as an important energy resource in the future, network performance highly depends on the dynamics of the available spectrum and green energy. As compared with the traditional energy source, the arrival rate of green energy, which highly depends on the environment of the energy harvesters, is rather random and intermittent. To optimize and adapt the usage of green energy according to the opportunistic spectrum availability, we discuss research challenges in designing cognitive radio networks which are powered by energy harvesters

    Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    Full text link
    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.Comment: This manuscript is submitted to IEEE Communication Surveys and Tutorials for possible publicatio

    A Journey from Improper Gaussian Signaling to Asymmetric Signaling

    Full text link
    The deviation of continuous and discrete complex random variables from the traditional proper and symmetric assumption to a generalized improper and asymmetric characterization (accounting correlation between a random entity and its complex conjugate), respectively, introduces new design freedom and various potential merits. As such, the theory of impropriety has vast applications in medicine, geology, acoustics, optics, image and pattern recognition, computer vision, and other numerous research fields with our main focus on the communication systems. The journey begins from the design of improper Gaussian signaling in the interference-limited communications and leads to a more elaborate and practically feasible asymmetric discrete modulation design. Such asymmetric shaping bridges the gap between theoretically and practically achievable limits with sophisticated transceiver and detection schemes in both coded/uncoded wireless/optical communication systems. Interestingly, introducing asymmetry and adjusting the transmission parameters according to some design criterion render optimal performance without affecting the bandwidth or power requirements of the systems. This dual-flavored article initially presents the tutorial base content covering the interplay of reality/complexity, propriety/impropriety and circularity/noncircularity and then surveys majority of the contributions in this enormous journey.Comment: IEEE COMST (Early Access

    Energy-Throughput Trade-offs in a Wireless Sensor Network with Mobile Relay

    Full text link
    In this paper we analyze the trade-offs between energy and throughput for links in a wireless sensor network. Our application of interest is one in which a number of low-powered sensors need to wirelessly communicate their measurements to a communications sink, or destination node, for communication to a central processor. We focus on one particular sensor source, and consider the case where the distance to the destination is beyond the peak power of the source. A relay node is required. Transmission energy of the sensor and the relay can be adjusted to minimize the total energy for a given throughput of the connection from sensor source to destination. We introduce a bounded random walk model for movement of the relay between the sensor and destination nodes, and characterize the total transmission energy and throughput performance using Markov steady state analysis. Based on the trade-offs between total energy and throughput we propose a new time-sharing protocol to exploit the movement of the relay to reduce the total energy. We demonstrate the effectiveness of time-sharing for minimizing the total energy consumption while achieving the throughput requirement. We then show that the time-sharing scheme is more energy efficient than the popular sleep mode scheme

    Survey of Important Issues in UAV Communication Networks

    Full text link
    Unmanned Aerial Vehicles (UAVs) have enormous potential in the public and civil domains. These are particularly useful in applications where human lives would otherwise be endangered. Multi-UAV systems can collaboratively complete missions more efficiently and economically as compared to single UAV systems. However, there are many issues to be resolved before effective use of UAVs can be made to provide stable and reliable context-specific networks. Much of the work carried out in the areas of Mobile Ad Hoc Networks (MANETs), and Vehicular Ad Hoc Networks (VANETs) does not address the unique characteristics of the UAV networks. UAV networks may vary from slow dynamic to dynamic; have intermittent links and fluid topology. While it is believed that ad hoc mesh network would be most suitable for UAV networks yet the architecture of multi-UAV networks has been an understudied area. Software Defined Networking (SDN) could facilitate flexible deployment and management of new services and help reduce cost, increase security and availability in networks. Routing demands of UAV networks go beyond the needs of MANETS and VANETS. Protocols are required that would adapt to high mobility, dynamic topology, intermittent links, power constraints and changing link quality. UAVs may fail and the network may get partitioned making delay and disruption tolerance an important design consideration. Limited life of the node and dynamicity of the network leads to the requirement of seamless handovers where researchers are looking at the work done in the areas of MANETs and VANETs, but the jury is still out. As energy supply on UAVs is limited, protocols in various layers should contribute towards greening of the network. This article surveys the work done towards all of these outstanding issues, relating to this new class of networks, so as to spur further research in these areas.Comment: arXiv admin note: substantial text overlap with arXiv:1304.3904 by other author

    Free Space Optical Communication: Challenges and Mitigation Techniques

    Full text link
    In recent years, free space optical (FSO) communication has gained significant importance owing to its unique features: large bandwidth, license free spectrum, high data rate, easy and quick deployability, less power and low mass requirement. FSO communication uses optical carrier in the near infrared (IR) and visible band to establish either terrestrial links within the Earths atmosphere or inter-satellite or deep space links or ground to satellite or satellite to ground links. However, despite of great potential of FSO communication, its performance is limited by the adverse effects (viz., absorption, scattering and turbulence) of the atmospheric channel. Out of these three effects, the atmospheric turbulence is a major challenge that may lead to serious degradation in the bit error rate (BER) performance of the system and make the communication link infeasible. This paper presents a comprehensive survey on various challenges faced by FSO communication system for both terrestrial and space links. It will provide details of various performance mitigation techniques in order to have high link availability and reliability of FSO system. The first part of the paper will focus on various types of impairments that poses a serious challenge to the performance of FSO system for both terrestrial and space links. The latter part of the paper will provide the reader with an exhaustive review of various techniques used in FSO system both at physical layer as well as at the upper layers (transport, network or link layer) to combat the adverse effects of the atmosphere. Further, this survey uniquely offers the current literature on FSO coding and modulation schemes using various channel models and detection techniques. It also presents a recently developed technique in FSO system using orbital angular momentum to combat the effect of atmospheric turbulence.Comment: 28 pages, 13 figures and 8 table

    Distributed Topology Design for Network Coding Deployed Large-scale Sensor Networks

    Full text link
    In this paper, we propose a solution to the distributed topology formation problem for large-scale sensor networks with multi-source multicast flows. The proposed solution is based on game-theoretic approaches in conjunction with network coding. The proposed algorithm requires significantly low computational complexity, while it is known as NP-hard to find an optimal topology for network coding deployed multi-source multicast flows. In particular, we formulate the problem of distributed network topology formation as a network formation game by considering the nodes in the network as players that can take actions for making outgoing links. The proposed solution decomposes the original game that consists of multiple players and multicast flows into independent link formation games played by only two players with a unicast flow. We also show that the proposed algorithm is guaranteed to determine at least one stable topology. Our simulation results confirm that the computational complexity of the proposed solution is low enough for practical deployment in large-scale networks

    Opportunistic Spectrum Sharing in Dynamic Access Networks: Deployment Challenges, Optimizations, Solutions, and Open Issues

    Full text link
    In this paper, we investigate the issue of spectrum assignment in CRNs and examine various opportunistic spectrum access approaches proposed in the literature. We provide insight into the efficiency of such approaches and their ability to attain their design objectives. We discuss the factors that impact the selection of the appropriate operating channel(s), including the important interaction between the cognitive linkquality conditions and the time-varying nature of PRNs. Protocols that consider such interaction are described. We argue that using best quality channels does not achieve the maximum possible throughput in CRNs (does not provide the best spectrum utilization). The impact of guard bands on the design of opportunistic spectrum access protocols is also investigated. Various complementary techniques and optimization methods are underlined and discussed, including the utilization of variablewidth spectrum assignment, resource virtualization, full-duplex capability, cross-layer design, beamforming and MIMO technology, cooperative communication, network coding, discontinuousOFDM technology, and software defined radios. Finally, we highlight several directions for future research in this field
    • …
    corecore