4 research outputs found

    Exodisk--maximizing application control over storage management

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaves 67-72).by Robert Grimm.M.Eng

    Performance of Cache Coherence in Stackable Filing

    No full text
    Stackable design of filing systems constructs sophisticated services from multiple, independently developed layers. This approach has been advocated to address development problems from code re-use, to extensibility, to version management. Individual layers of such a system often need to cache data to improve performance or provide desired functionality. When access to different layers is allowed, cache incoherencies can occur. Without a cache coherence solution, layer designers must either restrict layer access and flexibility or compromise the layered structure to avoid potential data corruption. The value of modular designs such as stacking can be questioned without a suitable solution to this problem. This paper presents a general cache coherence architecture for stackable filing, including a standard approach to data identification as a key component to layered coherence protocols. We also present a detailed performance analysis of one implementation of stack cache-coherence, which suggests that very low overheads can be achieved in practice.

    Performance of Cache Coherence in Stackable Filing

    No full text
    Stackable design of filing systems constructs sophisticated services from multiple, independently developed layers. This approach has been advocated to address development problems from code re-use, to extensibility, to version management. Individual layer

    The Design of a High-Integrity Disk Management Subsystem

    Get PDF
    This dissertation describes and experimentally evaluates the design of the Logical Disk, a disk management subsystem that guarantees the integrity of data stored on disk even after system failures, while still providing performance competitive to other storage systems. Current storage systems that use the hard disk as storage medium, such as file systems, often do not provide sufficient protection against loss of data after a system failure. The designers of such systems are afraid that the amount of effort necessary for data protection would also result in too much loss of performance. The Logical Disk uses many different techniques to guarantee data integrity, including the support to execute multiple commands as one atomic action and avoiding `in-place updates' at all times. The techniques used to provide competitive performance include the technique of combining many, small write commands into one large, sequential, and thus efficient, write to disk, and clustering the data on disk continuously and automatically.Tanenbaum, A.S. [Promotor]Jonge, W. de [Copromotor
    corecore