518 research outputs found

    Achievable Sum Rates of Half- and Full-Duplex Bidirectional OFDM Communication Links

    Full text link
    While full-duplex (FD) transmission has the potential to double the system capacity, its substantial benefit can be offset by the self-interference (SI) and non-ideality of practical transceivers. In this paper, we investigate the achievable sum rates (ASRs) of half-duplex (HD) and FD transmissions with orthogonal frequency division multiplexing (OFDM), where the non-ideality is taken into consideration. Four transmission strategies are considered, namely HD with uniform power allocation (UPA), HD with non-UPA (NUPA), FD with UPA, and FD with NUPA. For each of the four transmission strategies, an optimization problem is formulated to maximize its ASR, and a (suboptimal/optimal) solution with low complexity is accordingly derived. Performance evaluations and comparisons are conducted for three typical channels, namely symmetric frequency-flat/selective and asymmetric frequency-selective channels. Results show that the proposed solutions for both HD and FD transmissions can achieve near optimal performances. For FD transmissions, the optimal solution can be obtained under typical conditions. In addition, several observations are made on the ASR performances of HD and FD transmissions.Comment: To appear in IEEE TVT. This paper solves the problem of sum achievable rate optimization of bidirectional FD OFDM link, where joint time and power allocation is involve

    On the Potential of Full Duplex Performance in 5G Ultra-Dense Small Cell Networks

    Get PDF

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table

    Bidirectional Cooperative Relaying

    Get PDF
    • …
    corecore