11,638 research outputs found

    Improved Fair-Zone technique using Mobility Prediction in WSN

    Full text link
    The self-organizational ability of ad-hoc Wireless Sensor Networks (WSNs) has led them to be the most popular choice in ubiquitous computing. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. It has some limitation in energy and mobility of nodes. In this paper we propose a mobility prediction technique which tries overcoming above mentioned problems and improves the life time of the network. The technique used here is Exponential Moving Average for online updates of nodal contact probability in cluster based network.Comment: 10 pages, 7 figures, Published in International Journal Of Advanced Smart Sensor Network Systems (IJASSN

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Adaptive Hierarchical Data Aggregation using Compressive Sensing (A-HDACS) for Non-smooth Data Field

    Full text link
    Compressive Sensing (CS) has been applied successfully in a wide variety of applications in recent years, including photography, shortwave infrared cameras, optical system research, facial recognition, MRI, etc. In wireless sensor networks (WSNs), significant research work has been pursued to investigate the use of CS to reduce the amount of data communicated, particularly in data aggregation applications and thereby improving energy efficiency. However, most of the previous work in WSN has used CS under the assumption that data field is smooth with negligible white Gaussian noise. In these schemes signal sparsity is estimated globally based on the entire data field, which is then used to determine the CS parameters. In more realistic scenarios, where data field may have regional fluctuations or it is piecewise smooth, existing CS based data aggregation schemes yield poor compression efficiency. In order to take full advantage of CS in WSNs, we propose an Adaptive Hierarchical Data Aggregation using Compressive Sensing (A-HDACS) scheme. The proposed schemes dynamically chooses sparsity values based on signal variations in local regions. We prove that A-HDACS enables more sensor nodes to employ CS compared to the schemes that do not adapt to the changing field. The simulation results also demonstrate the improvement in energy efficiency as well as accurate signal recovery

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network
    • …
    corecore