1,187 research outputs found

    The Impact of Data Replicatino on Job Scheduling Performance in Hierarchical data Grid

    Full text link
    In data-intensive applications data transfer is a primary cause of job execution delay. Data access time depends on bandwidth. The major bottleneck to supporting fast data access in Grids is the high latencies of Wide Area Networks and Internet. Effective scheduling can reduce the amount of data transferred across the internet by dispatching a job to where the needed data are present. Another solution is to use a data replication mechanism. Objective of dynamic replica strategies is reducing file access time which leads to reducing job runtime. In this paper we develop a job scheduling policy and a dynamic data replication strategy, called HRS (Hierarchical Replication Strategy), to improve the data access efficiencies. We study our approach and evaluate it through simulation. The results show that our algorithm has improved 12% over the current strategies.Comment: 11 pages, 7 figure

    An enhanced ant colony system algorithm for dynamic fault tolerance in grid computing

    Get PDF
    Fault tolerance in grid computing allows the system to continue operate despite occurrence of failure. Most fault tolerance algorithms focus on fault handling techniques such as task reprocessing, checkpointing, task replication, penalty, and task migration. Ant colony system (ACS), a variant of ant colony optimization (ACO), is one of the promising algorithms for fault tolerance due to its ability to adapt to both static and dynamic combinatorial optimization problems. However, ACS algorithm does not consider the resource fitness during task scheduling which leads to poor load balancing and lower execution success rate. This research proposes dynamic ACS fault tolerance with suspension (DAFTS) in grid computing that focuses on providing effective fault tolerance techniques to improve the execution success rate and load balancing. The proposed algorithm consists of dynamic evaporation rate, resource fitness-based scheduling process, enhanced pheromone update with trust factor and suspension, and checkpoint-based task reprocessing. The research framework consists of four phases which are identifying fault tolerance techniques, enhancing resource assignment and job scheduling, improving fault tolerance algorithm and, evaluating the performance of the proposed algorithm. The proposed algorithm was developed in a simulated grid environment called GridSim and evaluated against other fault tolerance algorithms such as trust-based ACO, fault tolerance ACO, ACO without fault tolerance and ACO with fault tolerance in terms of total execution time, average latency, average makespan, throughput, execution success rate and load balancing. Experimental results showed that the proposed algorithm achieved the best performance in most aspects, and second best in terms of load balancing. The DAFTS achieved the smallest increase on execution time, average makespan and average latency by 7%, 11% and 5% respectively, and smallest decrease on throughput and execution success rate by 6.49% and 9% respectively as the failure rate increases. The DAFTS also achieved the smallest increment on execution time, average makespan and average latency by 5.8, 8.5 and 8.7 times respectively, and highest increase on throughput and highest execution success rate by 72.9% and 93.7% respectively as the number of jobs increases. The proposed algorithm can effectively overcome load balancing problems and increase execution success rates in distributed systems that are prone to faults

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods

    GREEDY SINGLE USER AND FAIR MULTIPLE USERS REPLICA SELECTION DECISION IN DATA GRID

    Get PDF
    Replication in data grids increases data availability, accessibility and reliability. Replicas of datasets are usually distributed to different sites, and the choice of any replica locations has a significant impact. Replica selection algorithms decide the best replica places based on some criteria. To this end, a family of efficient replica selection systems has been proposed (RsDGrid). The problem presented in this thesis is how to select the best replica location that achieve less time, higher QoS, consistency with users' preferences and almost equal users' satisfactions. RsDGrid consists of three systems: A-system, D-system, and M-system. Each of them has its own scope and specifications. RsDGrid switches among these systems according to the decision maker

    E2DR: Energy Efficient Data Replication in Data Grid

    Get PDF
    Abstract— Data grids are an important branch of gird computing which provide mechanisms for the management of large volumes of distributed data. Energy efficiency has recently emerged as a hot topic in large distributed systems. The development of computing systems is traditionally focused on performance improvements driven by the demand of client's applications in scientific and business domains. High energy consumption in computer systems leads to their limited performance because of the increased consumption of carbon dioxide and amount of electricity bills. Thus, the goal of design of computer systems has been shifted to power and energy efficiency. Data grids can solve large scale applications that require a large amount of data. Data replication is a common solution to improve availability and file access time in such environments. This solution replicates the data file in many different sites. In this paper, a new data replication method is proposed that is not only data aware, but also is energy efficient. Simulation results with CLOUDSIM show that the proposed method gives better energy consumption, average response time, and network usage than other algorithms and prevents the unnecessary creation of replica, which leads to efficient storage usage

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems
    • …
    corecore