12 research outputs found

    Radio Frequency Fingerprinting Exploiting Non-Linear Memory Effect

    Get PDF
    Radio frequency fingerprint (RFF) identification distinguishes wireless transmitters by exploiting their hardware imperfection that is inherent in typical radio frequency (RF) front ends. This can reduce the risks for the identities of legitimate devices being copied, or forged, which can also occur in conventional software-based identification systems. This paper analyzes the feasibility of device identification exploiting the unique non-linear memory effect of the transmitter RF chains consisting of matched pulse shaping filters and non-linear power amplifiers (PAs). This unique feature can be extracted from the received distorted constellation diagrams (CDs) with the help of image recognition-based classification algorithms. In order to validate the performance of the proposed RFF approach, experiments are carried out in cabled and over the air (OTA) scenarios. In the cabled experiment, the average classification accuracy among systems of 8 PAs (4 PAs of the same model and the other 4 of different models) is around 92% at signal to noise ratio (SNR) of 10 dB. For the OTA line-of-sight (LOS) scenario, the average classification accuracy is 90% at SNR of 10 dB; for the non-line-of-sight (NLOS) scenario, the average classification accuracy is 79% at SNR of 12 dB

    An enhanced modulated waveform measurement system

    Get PDF
    The microwave devices and circuits need to be characterized prior to being employed in the design of systems and components. Unfortunately the measurement systems required to characterize the microwave devices and circuits have not kept pace with the emerging telecommunication technologies demands. This has resulted into a situation where either the circuits being employed in the components are unoptimized or the yield and turn-around of optimized circuits are slow. One of the contributing factors of such situations is the limitations of the existing measurement systems to scale up in performance to fulfil the necessary requirements. This thesis presents an enhanced multi-tone, time domain waveform measurement and engineering system. The presented system allows for a more considered, and scientific process to be adopted in the characterisation and measurement of microwave power devices for modern day communications systems. The main contributions to the field of research come in two areas; firstly developments that allow for accurate time domain measurement of complex modulated signals using commercially available equipment; and secondly in the area of active impedance control, where significant developments were made allowing active control of impedance across a modulated bandwidth. The first research area addressed is the fundamental difficulty in sampling multi-tone waveforms, where the main achievements have been the realisation of a high quality trigger clock for the sampling oscilloscope and a “Time Domain Partitioning” approach to measure and average multi-tone waveforms on-board. This approach allows the efficient collection of high quality vectoral information for all significant distortion terms, for all bands of interest. The second area of research investigated suitable impedance control architectures to comprehensively investigate out-of-band impedance effects on the linearity performance of a device. The ultimate aim was to simultaneously present independent, baseband impedances to all the significant baseband (IF) frequency components and to 2nd harmonic that result from a multi-tone excitation. The main achievement in this area was the ability of the enhanced measurement system to present the broadband impedance. At baseband this has been achieved in the time domain using a single arbitrary waveform generator (AWG) to synthesise the necessary waveforms to allow a specific IF impedance environment to be maintained across a wide IF bandwidth. To engineer the RF out-of-band load terminations at RF frequencies and to emulate specific power amplifier modes, a Tektronix AWG7000 Arbitrary Waveform Generator was used to deliver the desired impedances, practically fulfilling the wideband application requirements for reliable device characterisation under complex modulated excitations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An enhanced modulated waveform measurement system

    Get PDF
    The microwave devices and circuits need to be characterized prior to being employed in the design of systems and components. Unfortunately the measurement systems required to characterize the microwave devices and circuits have not kept pace with the emerging telecommunication technologies demands. This has resulted into a situation where either the circuits being employed in the components are unoptimized or the yield and turn-around of optimized circuits are slow. One of the contributing factors of such situations is the limitations of the existing measurement systems to scale up in performance to fulfil the necessary requirements. This thesis presents an enhanced multi-tone, time domain waveform measurement and engineering system. The presented system allows for a more considered, and scientific process to be adopted in the characterisation and measurement of microwave power devices for modern day communications systems. The main contributions to the field of research come in two areas; firstly developments that allow for accurate time domain measurement of complex modulated signals using commercially available equipment; and secondly in the area of active impedance control, where significant developments were made allowing active control of impedance across a modulated bandwidth. The first research area addressed is the fundamental difficulty in sampling multi-tone waveforms, where the main achievements have been the realisation of a high quality trigger clock for the sampling oscilloscope and a “Time Domain Partitioning” approach to measure and average multi-tone waveforms on-board. This approach allows the efficient collection of high quality vectoral information for all significant distortion terms, for all bands of interest. The second area of research investigated suitable impedance control architectures to comprehensively investigate out-of-band impedance effects on the linearity performance of a device. The ultimate aim was to simultaneously present independent, baseband impedances to all the significant baseband (IF) frequency components and to 2nd harmonic that result from a multi-tone excitation. The main achievement in this area was the ability of the enhanced measurement system to present the broadband impedance. At baseband this has been achieved in the time domain using a single arbitrary waveform generator (AWG) to synthesise the necessary waveforms to allow a specific IF impedance environment to be maintained across a wide IF bandwidth. To engineer the RF out-of-band load terminations at RF frequencies and to emulate specific power amplifier modes, a Tektronix AWG7000 Arbitrary Waveform Generator was used to deliver the desired impedances, practically fulfilling the wideband application requirements for reliable device characterisation under complex modulated excitations

    Performance analysis of OFDM technology on radio-over-fiber systems

    Get PDF
    Dissertação de mest., Engenharia Eletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011Nowadays, the demand for high speed, high quality and diversity in distributed services presents a challenge for telecommunication technology. Wireless systems provide the accessibility to end-user, but are not the solution for long distance links. Currently, the ideal technology for long-range transmissions at high data rates is optical fiber. Hence, a new concept for high capacity networks emerges, with centralized services into Base Stations (BS) engineered to provide flexibility and control over the system, and to perform operations such as electrical to optical domain conversion and modulation. Such Radio-over-Fiber (RoF) networks also appear as an attractive technology because they are efficient and cost effective. Orthogonal Frequency Division Multiplexing (OFDM) technology is widely used in a number of standards. For instance, it is actually the Multi-Carrier Modulation (MCM) technique applied in 802.11a/g/n wireless standards and in Digital Video Broadcasting-Terrestrial (DVB-T), among other prevailing systems, which makes this subject one particularly pertinent to study. OFDM systems are an appealing choice for waveform modulation, as they are very bandwidth efficient comparing to others MCM, and provide flexibility in data transmission rates. Additionally, an important advantage dwells in its natural robustness against severely interfering environments. In this thesis, fundamentals on OFDM technology are extensively described, and its application to wireless and optical fiber networks is introduced. The combined channel effects of these technologies on OFDM signals are investigated. In terms of performance analysis, this exposition focuses on understanding the importance of OFDM modulation parameters, and explores some OFDM signal properties. To achieve this, a simulator was implemented with Matlab to create arbitrary OFDM waveforms and emulate channel effects. This study also investigates the efficiency of OFDM technology over a real Radio Frequency (RF) system with an ideal communication channel. Finally, an experimental RoF configuration is implemented and its performance is assessed

    The Telecommunications and Data Acquisition Report

    Get PDF
    This publication provides reports on work performed for the Office of Space Tracking and Data Systems (OSTDS). It reports on the activities of the deep space network (DSN) and the Ground Communications Facility (GCF). Topics discussed on the operation of the DSN include: (1) spacecraft-ground communications; (2) station control and system technology; and (3) capabilities for new projects for systems implementation. The GCF compatibility with packets and data compression is discussed. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements
    corecore