23,902 research outputs found

    On the Construction of Polar Codes

    Full text link
    We consider the problem of efficiently constructing polar codes over binary memoryless symmetric (BMS) channels. The complexity of designing polar codes via an exact evaluation of the polarized channels to find which ones are "good" appears to be exponential in the block length. In \cite{TV11}, Tal and Vardy show that if instead the evaluation if performed approximately, the construction has only linear complexity. In this paper, we follow this approach and present a framework where the algorithms of \cite{TV11} and new related algorithms can be analyzed for complexity and accuracy. We provide numerical and analytical results on the efficiency of such algorithms, in particular we show that one can find all the "good" channels (except a vanishing fraction) with almost linear complexity in block-length (except a polylogarithmic factor).Comment: In ISIT 201

    Efficient Maximum-Likelihood Decoding of Linear Block Codes on Binary Memoryless Channels

    Full text link
    In this work, we consider efficient maximum-likelihood decoding of linear block codes for small-to-moderate block lengths. The presented approach is a branch-and-bound algorithm using the cutting-plane approach of Zhang and Siegel (IEEE Trans. Inf. Theory, 2012) for obtaining lower bounds. We have compared our proposed algorithm to the state-of-the-art commercial integer program solver CPLEX, and for all considered codes our approach is faster for both low and high signal-to-noise ratios. For instance, for the benchmark (155,64) Tanner code our algorithm is more than 11 times as fast as CPLEX for an SNR of 1.0 dB on the additive white Gaussian noise channel. By a small modification, our algorithm can be used to calculate the minimum distance, which we have again verified to be much faster than using the CPLEX solver.Comment: Submitted to 2014 International Symposium on Information Theory. 5 Pages. Accepte

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally. © 2009 IEEE
    • …
    corecore