4 research outputs found

    Backlog and Delay Reasoning in HARQ Systems

    Full text link
    Recently, hybrid-automatic-repeat-request (HARQ) systems have been favored in particular state-of-the-art communications systems since they provide the practicality of error detections and corrections aligned with repeat-requests when needed at receivers. The queueing characteristics of these systems have taken considerable focus since the current technology demands data transmissions with a minimum delay provisioning. In this paper, we investigate the effects of physical layer characteristics on data link layer performance in a general class of HARQ systems. Constructing a state transition model that combines queue activity at a transmitter and decoding efficiency at a receiver, we identify the probability of clearing the queue at the transmitter and the packet-loss probability at the receiver. We determine the effective capacity that yields the maximum feasible data arrival rate at the queue under quality-of-service constraints. In addition, we put forward non-asymptotic backlog and delay bounds. Finally, regarding three different HARQ protocols, namely Type-I HARQ, HARQ-chase combining (HARQ-CC) and HARQ-incremental redundancy (HARQ-IR), we show the superiority of HARQ-IR in delay robustness over the others. However, we further observe that the performance gap between HARQ-CC and HARQ-IR is quite negligible in certain cases. The novelty of our paper is a general cross-layer analysis of these systems, considering encoding/decoding in the physical layer and delay aspects in the data-link layer

    Resource Allocation for Interference Management in Wireless Networks

    Get PDF
    Interference in wireless networks is a major problem that impacts system performance quite substantially. Combined with the fact that the spectrum is limited and scarce, the performance and reliability of wireless systems significantly deteriorates and, hence, communication sessions are put at the risk of failure. In an attempt to make transmissions resilient to interference and, accordingly, design robust wireless systems, a diverse set of interference mitigation techniques are investigated in this dissertation. Depending on the rationale motivating the interfering node, interference can be divided into two categories, communication and jamming. For communication interference such as the interference created by legacy users(e.g., primary user transmitters in a cognitive radio network) at non-legacy or unlicensed users(e.g.,secondary user receivers), two mitigation techniques are presented in this dissertation. One exploits permutation trellis codes combined with M-ary frequency shift keying in order to make SU transmissions resilient to PUs’ interference, while the other utilizes frequency allocation as a mitigation technique against SU interference using Matching theory. For jamming interference, two mitigation techniques are also investigated here. One technique exploits time and structures a jammer mitigation framework through an automatic repeat request protocol. The other one utilizes power and, following a game-theoretic framework, employs a defense strategy against jamming based on a strategic power allocation. Superior performance of all of the proposed mitigation techniques is shown via numerical results
    corecore