5,497 research outputs found

    Towards Robust Deep Reinforcement Learning for Traffic Signal Control: Demand Surges, Incidents and Sensor Failures

    Full text link
    Reinforcement learning (RL) constitutes a promising solution for alleviating the problem of traffic congestion. In particular, deep RL algorithms have been shown to produce adaptive traffic signal controllers that outperform conventional systems. However, in order to be reliable in highly dynamic urban areas, such controllers need to be robust with the respect to a series of exogenous sources of uncertainty. In this paper, we develop an open-source callback-based framework for promoting the flexible evaluation of different deep RL configurations under a traffic simulation environment. With this framework, we investigate how deep RL-based adaptive traffic controllers perform under different scenarios, namely under demand surges caused by special events, capacity reductions from incidents and sensor failures. We extract several key insights for the development of robust deep RL algorithms for traffic control and propose concrete designs to mitigate the impact of the considered exogenous uncertainties.Comment: 8 page

    Performance Analysis of Micro Unmanned Airborne Communication Relays for Cellular Networks

    Full text link
    This paper analyses the potential of utilising small unmanned-aerial-vehicles (SUAV) as wireless relays for assisting cellular network performance. Whilst high altitude wireless relays have been investigated over the past 2 decades, the new class of low cost SUAVs offers new possibilities for addressing local traffic imbalances and providing emergency coverage.We present field-test results from an SUAV test-bed in both urban and rural environments. The results show that trough-to-peak throughput improvements can be achieved for users in poor coverage zones. Furthermore, the paper reinforces the experimental study with large-scale network analysis using both stochastic geometry and multi-cell simulation results.Comment: conferenc

    Elastic Multi-resource Network Slicing: Can Protection Lead to Improved Performance?

    Full text link
    In order to meet the performance/privacy requirements of future data-intensive mobile applications, e.g., self-driving cars, mobile data analytics, and AR/VR, service providers are expected to draw on shared storage/computation/connectivity resources at the network "edge". To be cost-effective, a key functional requirement for such infrastructure is enabling the sharing of heterogeneous resources amongst tenants/service providers supporting spatially varying and dynamic user demands. This paper proposes a resource allocation criterion, namely, Share Constrained Slicing (SCS), for slices allocated predefined shares of the network's resources, which extends the traditional alpha-fairness criterion, by striking a balance among inter- and intra-slice fairness vs. overall efficiency. We show that SCS has several desirable properties including slice-level protection, envyfreeness, and load driven elasticity. In practice, mobile users' dynamics could make the cost of implementing SCS high, so we discuss the feasibility of using a simpler (dynamically) weighted max-min as a surrogate resource allocation scheme. For a setting with stochastic loads and elastic user requirements, we establish a sufficient condition for the stability of the associated coupled network system. Finally, and perhaps surprisingly, we show via extensive simulations that while SCS (and/or the surrogate weighted max-min allocation) provides inter-slice protection, they can achieve improved job delay and/or perceived throughput, as compared to other weighted max-min based allocation schemes whose intra-slice weight allocation is not share-constrained, e.g., traditional max-min or discriminatory processor sharing
    • …
    corecore